
Design and Analysis of the Network Software Stack of an
Asynchronous Many-task System – The LCI parcelport of HPX

Jiakun Yan
jiakuny3@illinois.edu
University of Illinois
Urbana-Champaign
Urbana, IL, USA

Hartmut Kaiser
hkaiser@cct.lsu.edu

Louisiana State University
Baton Rouge, LA, USA

Marc Snir
snir@illinois.edu

University of Illinois
Urbana-Champaign
Urbana, IL, USA

ABSTRACT
The HPX asynchronous many-task runtime system has been using
TCP and MPI as its communication backends (parcelports). We de-
veloped a new HPX parcelport using a new communication library,
the Lightweight Communication Interface (LCI) that was designed
to better match the needs of systems such as HPX. We evaluate
its performance with various microbenchmarks and a real-world
astrophysics application, Octo-Tiger. Compared to the best con-
figuration of the MPI parcelport, microbenchmarks show that the
new LCI parcelport improves the message rate by up to 30x and
decreases latencies by up to 5x. It also reduces the total execution
time of Octo-Tiger by up to 1.175x compared to the best configura-
tion of the MPI parcelport and up to 13.6x compared to the same
configuration of the MPI parcelport. We discuss the performance
impacts of different design choices.

CCS CONCEPTS
•Networks→ Programming interfaces; •Computingmethod-
ologies → Parallel programming languages.

KEYWORDS
asynchronous many-task systems, communication libraries, multi-
threaded message passing
ACM Reference Format:
Jiakun Yan, Hartmut Kaiser, and Marc Snir. 2023. Design and Analysis of
the Network Software Stack of an Asynchronous Many-task System – The
LCI parcelport of HPX. In Workshops of The International Conference on
High Performance Computing, Network, Storage, and Analysis (SC-W 2023),
November 12–17, 2023, Denver, CO, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3624062.3624598

1 INTRODUCTION
The Message Passing Interface (MPI) has been the dominant com-
munication library of parallel computing for more than 20 years.
Coming with it is the most common way of writing programs on
parallel architectures, the Bulk-Synchronous Programming (BSP)
model, where all processes progress in lockstep. The BSP model

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0785-8/23/11. . . $15.00
https://doi.org/10.1145/3624062.3624598

faces challenges when dealing with irregular problems such as
graph algorithms and sparse numerical solvers and with heteroge-
neous architectures.

Asynchronous many-task runtime systems (AMTs), such as PaR-
SEC [7], Legion [4], StarPU [1], and HPX [15, 16], offer a potential
solution to these challenges. In these systems, parallel computations
are expressed as a set of fine-grained tasks and dependencies be-
tween those tasks. The dependency management, data movement,
and task scheduling are performed by the runtime. In this way, one
hopes to improve load balancing and achieve better computation-
communication overlap. However, the communications of AMTs
are typically multithreaded, irregular, and mix small and large mes-
sages. This is not the traditional use cases of the communication
libraries such as MPI [23]. As a result, the communication software
stack will often become the performance bottleneck as task systems
scale out.

The HPX asynchronous many-task runtime system [15, 16] ex-
tends C++ to enable users to describe arbitrary task dependency
graphs for tasks mapped across multiple computation nodes. Prior
to this project, it had two communication backends (parcelports):
TCP and MPI. The Lightweight Communication Interface (LCI) is
a communication library and research tool under active develop-
ment [11, 28]. Its primary goal is to provide efficient support for
multithreaded and irregular communications. In this project, we
integrate LCI into the HPX communication stacks and create an
LCI parcelport for HPX. We evaluate its performance using vari-
ous microbenchmarks and an application-level benchmark, Octo-
Tiger [21], an astrophysics application simulating star merging
based on the fast multipole method and adaptive octrees. We also
investigate the performance impact of various design decisions that
differentiate the LCI parcelport from the MPI parcelport.

The rest of the paper is organized as follows. Section 2 gives a
brief overview of LCI and HPX’s network stack. Section 3 describes
the design and implementation of the existing MPI parcelport of
HPX and the new LCI parcelport along with its multiple research
variants. Sections 4 and 5 present the experiment results and de-
tailed analysis of the microbenchmarks and the Octo-Tiger bench-
mark. Section 6 describes the related works. Section 7 concludes
the paper by discussing our main lessons and future works.

2 SOFTWARE STACK OVERVIEW
2.1 LCI
The Lightweight Communication Interface (LCI) is designed to
be an efficient communication library for multithreaded, irregular
communications. It is a research tool to explore design choices for
such libraries. It has been used to improve the performance of graph

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0002-6917-5525
https://orcid.org/0000-0002-8712-2806
https://orcid.org/0000-0002-3504-2468
https://doi.org/10.1145/3624062.3624598
https://doi.org/10.1145/3624062.3624598

SC-W 2023, November 12–17, 2023, Denver, CO, USA Jiakun Yan, Hartmut Kaiser, and Marc Snir

analytic applications [11]. We currently focus on improving the
performance of AMTs, as they can potentially make a big impact
on parallel programming and their communications are naturally
multithreaded and irregular. We hope to use LCI to answer research
questions such as (a) what is the most efficient way to remove or
minimize the thread contentions inside and outside the commu-
nication libraries in multithreaded irregular applications; and (b)
what is the right level of a communication API for multithreaded
irregular applications so that they can utilize most of the perfor-
mance provided by modern hardware without losing too much
programmability.

Currently, LCI is implemented as a mix of C and C++ libraries
and is based on two communication backends, libibverbs [20] and
libfabrics [24]. LCI has the following major features:

• Multithreaded performance as the first priority:We care-
fully design the internal data structures to minimize interference
between threads. We use atomic operations and fine-grained try
locks extensively instead of coarse-grained blocking locks. This
results in a much better and more stable multithreaded perfor-
mance.

• Versatile communication interface: LCI provides users with
various communication primitives andmessage completionmech-
anisms. For communication primitives, it offers two-sided send/receive
and one-sided put/get. Remote buffers can be specified or allo-
cated dynamically. For completion mechanisms, it offers synchro-
nizers (similar to MPI requests but with the option of multiple
producers), completion queues, and function handlers. LCI allows
users to combine any communication primitives with almost any
completion mechanism. This includes signaling the completion
of one-sided operations at the remote node. In this way, it in-
tends to enable users to select the communication primitives and
completion mechanisms that best fit the applications.

• Explicit control of communication behaviors and resources:
Users have access to the internal registered communication buffers
and memory registration functions and can control the semantics
of send/receive tag matching. They explicitly choose whether
to use the eager or rendezvous protocols. All communication
primitives are non-blocking and users can decide when to retry
in case of temporarily unavailable resources. LCI also gives users
an explicit function to make progress on the communication
engine. Users can tailor the LCI configuration to reduce software
overheads, or just use default settings if LCI is not a performance
bottleneck.

2.2 HPX Network Stack
HPX [15, 16] provides an RPC-like communication interface. The
HPX application can register functions as HPX actions. After that,
each locality (equivalent to MPI rank) can invoke actions on any
locality. The collection of arguments to invoke an action, provided
by the source locality, along with some metadata of the action
invoked, is packed into an HPX-internal data structure called parcel.
The HPX runtime aggregates parcels sharing the same destination
locality, serializes them, transfers them through the network to the
target locality, deserializes them, and invokes the specified actions.
Optionally, it also aggregates, serializes, transfers, and deserializes
the return values as parcels back to the source locality.

The parcel packing, aggregating, serialization, and deserializa-
tion are handled in the layer above the parcelport layer. The respon-
sibility of the parcelport layer is to transfer the serialized parcels
to the target locality. To simplify the description, we will call the
serialized parcels passed to the parcelport layer an HPX message.

An HPX message passed to the parcelport layer consists of the
following components:

• A non-zero-copy chunk containing all the small arguments of
the serialized parcels and some metadata about the parcels.

• Optionally, multiple zero-copy chunks, each containing a large
argument of the serialized parcels.

• A transmission chunk containing the index and length of the
arguments. It is only needed when there is at least one zero-copy
chunk. Otherwise, the remote locality can deserialize the parcels
sorely based on the non-zero-copy chunk.

Whether an argument is small or large is determined by an HPX
internal parameter: the zero-copy serialization threshold.

3 DESIGN
3.1 The MPI parcelport
Prior to this project, the HPX parcelport with the best performance
was the MPI parcelport. We describe below how the MPI parcelport
transfers an HPX message.
Connections: Transferring an HPX message involves transferring
one or multiple MPI messages. At a given time, there might be
multiple HPX messages being transferred concurrently. To manage
the chain of MPI messages associated with one HPX message, the
MPI parcelport creates a special object, connection, for each HPX
message. The source locality will create a sender connection when
the upper layer passes down an HPX message. The target locality
will create a receiver connection when it receives a header MPI
message, as described below. All the following sends and receives
will use that connection object.
MPI messages: One HPX message is communicated with the fol-
lowing sequence of MPI messages: One protocol message generated
by the parcelport, namely the header message, and three types of
messages passed by the upper layer, namely one non-zero-copy
chunk message, one (optional) transmission chunk message, and zero
or more zero-copy chunk messages. The header message contains
metadata about the HPX message such as the MPI tag it should use
for the follow-up sends and receives, the size of the non-zero-copy
chunk, and the existence and size of the transmission chunk. The
header message is sent to the target locality with MPI tag 0. On the
target locality, the MPI parcelport always has one receive posted
with the maximum header size and tag 0. It will repeatedly check
whether this receive operation has been completed as one of the
background activities, and if it has been completed, decode the
header and create a receiver connection for the follow-up receives.
If there is at least one zero-copy message, the MPI parcelport will
transfer the transmission chunk as a message. If the transmission
message and the non-zero-copy chunk message are small enough,
they will piggyback on the header message. The maximum size of
the header message is set to be the zero-copy serialization threshold.
Tag management: Each sender/receiver connection pair needs
a distinct tag for its MPI messages. The MPI parcelport uses an

Design and Analysis of the Network Software Stack of an Asynchronous Many-task System SC-W 2023, November 12–17, 2023, Denver, CO, USA

atomic counter to determine the next tag to use. The tag will wrap
around after the MPI tag’s upper bound. This assumes the previous
connection pair with the same tag value will always be completed
before that value is reused. Currently, this assumption seems to be
satisfied in all tested HPX programs, but a more robust mechanism
is needed. This is left to future work.
Concurrency and synchronization: The maximum number of
pending connections is set by an internal HPX parameter which
is 8192 by default. For each sender or receiver connection, there
will be at most one send and one receive posted at any given time.
A new MPI_Isend and MPI_Irecv will only be posted after the
previous one is complete. While the current operation posted by
a connection is not completed, the MPI parcelport will put the
pending connection into a connection list. The pending connection
list is protected by an HPX spinlock and will be checked periodically
by the worker threads as one of the background activities.
Threads and background work: MPI is initialized in the
MPI_THREAD_MULTIPLE mode. The communication is not fun-
neled to a dedicated thread. Instead, all the worker threads can
initiate a sender connection and send MPI messages. They all in-
voke the parcelport’s background work function when idle. The
background work function will (a) check the header message re-
ceive for new parcels (b) check the pending connection list in a
round-robin manner to see whether posted asynchronous opera-
tions made by connections have been completed and make progress
on the connections with completed operations.
The original version: the MPI parcelport we present here is ac-
tually an improved version. During this project, we applied what
we learned when developing the LCI parcelport and improved the
original MPI parcelport. There are two differences compared to the
original version.

• In the original version, the header message buffer is always stati-
cally allocated on the stack and fixed at 512 bytes. In addition, the
header message can only piggyback the non-zero-copy chunk
message. The current version allocates it dynamically and can
piggyback the transmission message.

• In the original version, tags are managed by a tag provider. When
a receiver connection completes, it will send a "tag release" mes-
sage back to the sender carrying the tag and the sender will
push the released tag into the tag provider. The tag provider is
implemented as a lock-protected vector containing all the free
tags. When the vector is empty, it will atomically create new tags
by incrementing a shared atomic counter. The current version
removes the "tag release" message and the free tag list. It just
uses a shared atomic counter.

The two optimizations improve the application (Octo-Tiger) perfor-
mance by about 20% and the first optimization makes the biggest
difference.

3.2 The LCI parcelport
We developed a new LCI parcelport for HPX. There are several
differences between the MPI and LCI parcelport, such as the com-
munication primitives, the completion mechanisms, and how to

make progress on the HPX network background tasks. These dif-
ferences are rooted in the different functionalities provided by MPI
and LCI.

3.2.1 The Baseline Implementation. We first present the baseline
implementation of the LCI parcelport, which is the default setting
in HPX and yields the best performance in general.
Connections: Same as the MPI parcelport, we create a sender and
receiver connection to handle the chain of sends and receives for
each HPX message.
The header message: Same as the MPI parcelport, we create a
metadata headermessage for eachHPXmessage. However, there are
several differences: First, we directly assemble the header message
in an LCI-allocated buffer so that, for eager messages, we save one
memory copy. Second, we transfer the header message using the
LCI dynamic put communication primitive: The target buffer is
allocated by the LCI runtime upon message arrival and an entry is
pushed to a pre-configured LCI completion queue.
Follow-up messages: All the follow-up messages follow the same
logic as the MPI parcelport. We use medium sends and receives
for messages of size below LCI’s eager message threshold and long
(rendezvous) sends and receives otherwise.
Tagmanagement: Similar to the MPI parcelport, we use an atomic
counter to get the next available tag. However, because LCI does
not guarantee in-order delivery, we use a distinct tag for each
follow-up message, rather than one tag for all messages of the same
connection. The safety of this approach follows from the same
assumptions and has the same limitations as the MPI parcelport.
Concurrency and Synchronization: Same as the MPI parcelport,
the LCI parcelport only posts a new send/receive after the previous
one completes. However, the LCI parcelport uses completion queues
as the completion mechanism so it does not need a connection list
to hold all the pending connections and check them repeatedly in a
round-robin manner.
Threads and background work: Same as the MPI parcelport,
all worker threads can initiate a sender connection and send LCI
messages and call the HPX background work function when idle.
However, in the LCI parcelport, the background work function
only polls the LCI completion queues for new parcels and pending
connections with completed operations. The LCI parcelport creates
one dedicated progress thread to make progress on the LCI runtime.
It is allocated and managed by the HPX scheduling system and
pinned by HPX at core 0.

3.2.2 Variants. Besides the baseline implementation, we also im-
plemented different variants of the LCI parcelport to understand
how different features of the parcelport impact performance.
Protocol: The LCI parcelport can be configured to use one of the
following communication protocols.

• putsendrecv: use the one-sided dynamic put for the header mes-
sage and the two-sided send and receive to transfer the remaining
messages, as described in the baseline implementation.

• sendrecv: only use the send and receive communication primitives.
We use send to send the header message and receive a header
message by always having one receive posted and checking for
its completion, the same as the MPI parcelport.

SC-W 2023, November 12–17, 2023, Denver, CO, USA Jiakun Yan, Hartmut Kaiser, and Marc Snir

Progress Type: The LCI parcelport can be configured to use one
of the following ways to call the LCI_progress function.

• rp: use theHPX resource partitioner to create and pin the progress
thread onto a dedicated core, as described in the baseline imple-
mentation.

• worker : do not create a progress thread. Instead, use HPX worker
threads to call the LCI progress function periodically. The progress
function is modified to be thread-safe.

Completion Mechanism: The LCI parcelport can be configured
to use one of the following completion mechanisms.

• cq: Use completion queues as the completion mechanism, as
described in the baseline implementation.

• sync: Use synchronizers as the completion mechanism. We use
a pending synchronizer list and round-robin checking similar
to the MPI parcelport. However, we do not change the comple-
tion mechanism of the one-sided dynamic put on the receive
side, as the current LCI version only supports a pre-configured
completion queue as the remote completion mechanism for puts.

Send Immediate Optimization: By default, the HPX upper layer
interacts with two internal data structures when sending a parcel:
the connection cache and the parcel queue. We describe each below:

Connection cache: The HPX upper layer maintains a cache of
connections. When it needs to send an HPX message to a specific
locality, it will first ask the connection cache for a connection to that
locality. If there is no such connection available in the cache, it will
create a new one unless the existing connection number reaches
the configured max value (8192 by default). When a connection
completes its work, it will be returned to the cache. This reduces
the memory allocation/deallocation frequency.

Parcel queue: The HPX upper layer maintains a parcel queue for
each target locality. To send a parcel, the HPX upper layer will first
enqueue the parcel into a parcel queue of its locality. After that,
it will dequeue all parcels from that parcel queue, serialize them
into an HPX message, and pass it to the parcelport layer. This adds
opportunities for message aggregation when multiple threads push
parcels to the parcel queue simultaneously or (in rare cases) the
connection cache runs out of free connection objects.

These two data structures improve aggregation and memory
usage. However, accesses to each of those are protected by HPX
spin locks so their use also increases lock contention. The MPI and
LCI parcelports can use two distinct configurations:

• default: Both data structures are used.
• immediate: The HPX upper layer serializes directly the parcel into
an HPX message and passes it to the parcelport layer, bypassing
the connection cache and the parcel queue.

4 MICROBENCHMARKS
We designed a series of microbenchmarks to study systemically the
performance of the MPI parcelport and the LCI parcelport and the
impact of different design decisions for the LCI parcelport.

The messages of task systems tend to be of small size and thus
typically do not saturate the network bandwidth. As a result, we
design our microbenchmarks to stress the underlying network stack
with relatively small messages (up to 64 KiB) and focus on latency

Table 1: Abbreviations for configurations.

Abbreviation Configuration

mpi Use the MPI parcelport
lci Use the LCI parcelport
sr Use the sendrecv protocol
psr Use the putsendrecv protocol
sy Use synchronizer as the completion type
cq Use completion queue as the completion type
pin Use a pinned dedicated progress thread
mt Use all worker threads to make progress
i Enable the send immediate optimization

Table 2: SDSC Expanse System Configuration.

CPU AMD EPYC 7742 64-Core Processor
(2 sockets, 128 cores per node)

Memory 256 GB, DDR4
Storage 1TB Local Intel NVMe SSD
NIC Mellanox ConnectX-6
Interconnect HDR InfiniBand (2x50Gbps)
Max Allowed 32 Nodes
Nodes/Job
OS Rocky Linux 8.7
Compiler GCC 10.2.0
Software OpenMPI 4.1.5, UCX 1.14.0

and message rate, instead of the latency and bandwidth that is
typically studied in traditional communication microbenchmarks.

All the microbenchmarks use two HPX processes, one sender
and one receiver, running on two separate compute nodes, and
each uses all the cores on its node. We rely on the task scheduler in
HPX to run the communication tasks so messages can be sent and
received on any thread.

Table 1 explains the naming scheme used for the configurations
tested. In most cases, all the LCI parcelport variants without the
send immediate optimization exhibit similar results sowe only show
one such configuration, lci_psr_cq_pin, to reduce clutter. When
using both the putsendrecv protocol and the sync completion type,
the completion mechanism for the header messages on the receive
side is still a completion queue, as the current implementation of
the LCI put can only use a pre-configured completion queue as the
remote completion object.

All experiments in this section are performed on the SDSC Ex-
panse system. Its configuration is shown in Table 2. Unless other-
wise noted, all experiments are performed at least five times and the
figure shows the average and standard deviation. We keep the HPX
zero-copy serialization threshold at its default value: 8192 bytes.

4.1 Message Rate
For the message rate microbenchmark, a sender attempts to create
tasks at a fixed rate. Each task will inject a batch of fixed-size
messages. The receiver waits for all messages to be received and
then signals back to the sender with one short message. The sender

Design and Analysis of the Network Software Stack of an Asynchronous Many-task System SC-W 2023, November 12–17, 2023, Denver, CO, USA

measures the achieved injection time – the time it took to generate
all tasks, and the actual communication time – the time it took to
have all messages received. The two times diverge when messages
cannot be sent fast enough, resulting in blocked tasks or queued
messages. Rather than timings, we plot the achieved injection rate
and the message rate that are obtained by dividing the number
of transferred messages by the achieved injection time and the
communication time.

Figure 1: Achieved message rate of 8B messages with dif-
ferent injection rates – MPI v.s. LCI with/without the send
immediate optimizations.

Figure 2: Achievedmessage rate of 8Bmessageswith different
injection rates – Different LCI configurations (with the send
immediate optimizations).

Fig. 1 and Fig. 2 show the achieved message rate of 8B messages
with attempted injection rates ranging from 100K/s to 1600K/s and
unlimited. We set the batch size to 100 and the total number of

Figure 3: The highest achieved message rate of 8B messages
across all injection rates.

messages to 500K. (The numbers are chosen so that the system will
not run out of memory and crash.) For ease of comparison, we also
add Fig. 3, which shows the highest achieved message rate across
all injection rates.

With 8B messages, each parcel is transferred through one mes-
sage: the header message; all those messages have the same tag.
We have the following observations:

• For almost all cases, the achieved message rate first matches the
injection rate almost perfectly and then plateaus. The only excep-
tion is the achieved message rate of the MPI parcelport without
the send immediate optimization (mpi): it first increases and then
decreases. It shows some component of the MPI parcelport data
path is not stable under high message injection pressure.

• Comparing lci_psr_cq_pin_i and lci_psr_cq_mt_i, we see that a
dedicated progress thread improves themessage rate by up to 2.6x.
Profiling results show the difference mainly comes from thread
contention. When multiple worker threads call the progress func-
tion, they contend on various resources such as the network
receive queue and completion queue, the matching table, the LCI
completion queue, and some internal counters. Even though we
carefully designed the thread-safe version of the LCI progress
function using fine-grained try-locks and atomic variables, thread
contention in the progress engine still makes a great difference
when the incoming message rate is high, and has a bigger impact
than the completion type and communication primitive, as all
the mt_i variants are stuck at around 285K/s.

• Comparing lci_psr_cq_pin_i, lci_sr_cq_pin_i, we can see the per-
formance impact of communication primitives. Using two-sided
receives rather than one-sided put reduces the message rate by
up to 3.5x. Using two-sided communication adds the overhead
of posting receives and matching sends to receives. This causes
additional load on the progress engine, as it has to handle the
receive of unexpected messages. Second, the achieved message
rate is determined by both the rate of posting receives and the

SC-W 2023, November 12–17, 2023, Denver, CO, USA Jiakun Yan, Hartmut Kaiser, and Marc Snir

rate of polling the completion objects, and balancing these two
is difficult.

• Without the send immediate optimizations, all the LCI parcelport
variants achieve message rates of around 400K/s (we show only
one of these variants in this paper, to avoid clutter). It means
aggregation (the lack of the send immediate optimization) yields
mixed results for the LCI parcelport. For some variants such as
lci_psr_cq_pin, removing the aggregation (lci_psr_cq_pin_i) im-
proves the message rate by up to 80%. For other variants such
as lci_sr_cq_pin (not shown in the figure, but achieves around
400K/s), removing the aggregation (lci_sr_cq_pin_i) reduces the
message rate by half. It shows aggregation can help the perfor-
mance by reducing the small-message injection pressure if the
underlying network stack is not efficient enough to handle it,
but will hurt the performance otherwise as it adds additional
software overhead and can become a bottleneck itself.

Figure 4: Achieved message rate of 16KiB messages with
different injection rates – MPI v.s. LCI with/without the send
immediate optimizations.

Fig. 4 and Fig. 5 show the achieved message rate for 16KiB mes-
sages with attempted injection rates ranging from 10K/s to 640K/s
and unlimited. We set the batch size to 10 and the total number
of messages to 100K. The standard deviations of some data points
are too large so we shrink the error bar by 2.49x. Similarly, we add
Fig. 6 to show the highest achieved message rate across all injection
rates.

With 16KiB messages, each parcel is transferred through two
messages: one header message and one follow-up message. Under
high injection rates, the system will have a large number of mes-
sages transferred simultaneously, half with the same tag (the header
messages) and half with different tags (the follow-up messages).
We have the following observations:

• The LCI parcelport achieves up to 30x more throughput than
the MPI parcelport. As the injection rate increases, the achieved
message rates of both MPI parcelport variants keep decreasing.
This shows it is very difficult for the MPI parcelport to receive

Figure 5: Achieved message rate of 16KiB messages with
different injection rates – Different LCI configurations (with
the send immediate optimizations). To reduce clutter, we
shrink the error bar by 2.49x.

Figure 6: The highest achieved message rate of 16KiB mes-
sages across all injection rates.

a large number of concurrent messages with arbitrary source
ranks and different tags.

• All the LCI parcelport variants with synchronizers exhibit large
oscillations after reaching their peak message rate. Instead, those
with completion queues stay stably at their peak message rate.
While we have not identified the actual cause, one hypothesis is
that these oscillations are due to a resonance between synchro-
nizer polling rate and message arrival rate. In addition, using
completion queues can improve the peak message rate by 25% -
30%.

• All the LCI parcelport variants with a dedicated progress thread
achieve higher throughput than their counterparts using worker

Design and Analysis of the Network Software Stack of an Asynchronous Many-task System SC-W 2023, November 12–17, 2023, Denver, CO, USA

threads calling progress function. The dedicated progress thread
improves the message rate by 17% - 50%.

• All the LCI parcelport variants without the send immediate op-
timization achieve message rates between 40K/s and 50K/s. It
shows the aggregation provided by the parcel queue cannot help
the message rate of large messages. We attribute this to the fact
that they cannot aggregate zero-copy chunks while suffering
from the additional overhead of aggregation.

4.2 Latency
We use a multi-message ping-pong-like microbenchmark to study
latency: a fixed number (determined by window size) of messages
of a fixed size are sent back and forth between two processes for
a fixed number (determined by step number) of iterations. Every
"ping" and "pong" is performed by a different HPX task. Essentially,
the task dependency graph consists of multiple chains of tasks
that alternate between the two processes. Window size determines
the number of chains and step number determines the length of
the chains. We measure the total execution time and calculate the
average time per iteration to be the one-way latency of the message.

Figure 7: Single-message ping-pong latency with different
message sizes.

Fig. 7 shows the message latency with different message sizes.
We fix the window size to be 1. The HPX zero-copy serialization
threshold is kept at 8192 bytes. We have the following observations:

• The baseline implementation of the LCI parcelport (lci_psr_cq_pin)
always has lower latency than theMPI parcelport. TheMPI parcel-
port with the send immediate optimization (mpi_i) performs rea-
sonably well when the messages are smaller than 1KB: it is only
1.3x worse than lci_psr_cq_pin. However, it exhibits much worse
latencies for larger messages (3-5x worse than lci_psr_cq_pin),
potentially due to some protocols switch in the MPI/UCX layer.

• For all LCI parcelport variants, the send-immediate optimization
always helps reduce the message latency. This is expected be-
cause (a) aggregation would not bring any benefits since there
is only one message being transferred at any time (b) the send-
immediate optimization bypasses the connection cache and par-
cel queues and thus reduces the software overhead.

• The LCI parcelport variants with the send immediate can be
roughly divided into two groups. All the variants with a ded-
icated progress thread and using completion queues yield the
lowest latency. (Note that psr_sy also uses a completion queue
for the header message on the receiver side due to the implemen-
tation limitation of the current LCI put.) The reason is two-fold.
First, having a dedicated progress thread, compared to having all
the worker threads calling into the progress engine when idle,
guarantees fast and steady communication responses. Second,
using a dedicated progress thread and completion queue has a
faster code path with fewer locks and atomic operations.

Figure 8: Latency of 8Bmessages with different window sizes.

Figure 9: Latency of 16KiB messages with different window
sizes.

SC-W 2023, November 12–17, 2023, Denver, CO, USA Jiakun Yan, Hartmut Kaiser, and Marc Snir

Table 3: Rostam System Configuration.

CPU Intel(R) Xeon(R) Gold 6148 CPU (Skylake)
(2 sockets, 40 cores per node)

Memory 96 GB, DDR4
Storage 1TB Local NVMe SSD
NIC Mellanox ConnectX-3
Interconnect FDR InfiniBand (4x14Gbps)
Max Allowed 16 Nodes
Nodes/Job
OS Red Hat Linux 8.8
Compiler GCC 10.3.1
Software OpenMPI 4.1.5, UCX 1.14.0

Fig. 8 and Fig. 9 show the 8B and 16KiB message latency with
varying window sizes from 1 to 64. The intention of these experi-
ments is to study the ability of the parcelport to overlap the com-
munication time of different messages. We have the following ob-
servations:

• In all cases, the latency increases with the window size. This
shows a general trend that more concurrent messages lead to
larger software overhead.

• For large messages, the latency gap between the MPI and LCI
parcelport becomes larger as the window size increases. The
latency ratio between mpi_i and lci_psr_cq_pin_i increases from
2x (window size 1) to 9.6x (window size 64). This means MPI has
difficulty dealing with a large number of concurrent messages.

• The send immediate optimization always helps reduce latency
for the LCI parcelport, but exhibits mixed results for the MPI
parcelport. Especially for small messages, mpi_i initially per-
forms much better than mpi, but becomes worse as the window
size grows. The switching point is window size 8. This shows
again MPI performs poorly when handling a large number of
concurrent messages.

• lci_psr_cq_pin_i is the best variant in almost all cases, which is
expected. All the other variants become worse when there are
more concurrent small messages, potentially due to the locks and
atomic operations in their message-passing code path. Posting
receives will involve more contention in the matching table and
the producer side of completion objects. Worker threads making
progress will involve more contention on the progress engine.
Synchronizer will involve contention on the synchronizer pools.
The performance impact of the progress type and the commu-
nication primitives is larger than the impact of the completion
type.

5 APPLICATION BENCHMARK
To understand how the performance difference between the MPI
parcelport and the LCI parcelport in the microbenchmarks trans-
lates into application speedup, we useOcto-Tiger [21] as an application-
level benchmark. Octo-Tiger is an astrophysics application simulat-
ing the evolution of binary star systems based on the fast multipole
method on adaptive octrees. It is built on top of HPX and uses HPX
actions and local control objects extensively to achieve asynchro-
nous execution and computation-communication overlap.

Experiments in this section are performed on SDSC Expanse
and Rostam. Table.2 and Table.3 shows their system configuration.
These two platforms use different processors and different genera-
tions of InfiniBand, so we use them to study how the LCI parcelport
performs with different hardware. Octo-Tiger has a configuration
parameter that determines the maximum level of the adaptive oct-
tree, which in turn determines the total number of tasks. Octo-Tiger
uses space-filling curves to partition the tree nodes into processes.
Increasing the number of levels increases computation and intra-
process communications faster than inter-process communications.
We set the number of levels to a relatively small number (6 on
SDSC Expanse and 5 on Rostam) to study configurations where
inter-process communication is a significant bottleneck, as happens
in strong scaling. We set the stop step (iteration count) to be 5 to get
a reasonable total execution time. Each experiment is performed at
least five times. We show the average and standard deviation in the
figures. In all figures,mpi_imeans the MPI parcelport with the send
immediate optimization. mpi means the MPI parcelport without
the send immediate optimization. The solid line with the left axis
shows the absolute performance (step count per second). The hash
line with the right axis shows the relative speedup of Octo-Tiger
with the LCI parcelport compared to the two MPI variants. We use
the same configuration of the LCI parcelport described in Sec.3.2.1
a.k.a lci_psr_cq_rp_i. We do not show all the other LCI parcelport
variants because the difference between them is very small at the
application level.

Figure 10: Step count per second of Octo-Tiger on SDSC Ex-
panse with different numbers of computation nodes (strong
scaling).mpi_i means the MPI parcelport with the send im-
mediate optimization.mpimeans theMPI parcelport without
the send immediate optimization. lci represents the default
configuration a.k.a lci_psr_cq_rp_i.

Fig. 10 and Fig. 11 show the step count per second of running
Octo-Tiger with different numbers of computation nodes on SDSC
Expanse and Rostam. We only show the 32-node result of running
Octo-Tiger with mpi on SDSC Expanse since the mpi_i version is
extremely slow. On both platforms, the LCI parcelport performs

Design and Analysis of the Network Software Stack of an Asynchronous Many-task System SC-W 2023, November 12–17, 2023, Denver, CO, USA

Figure 11: Step count per second of Octo-Tiger on Rostam
with different numbers of computation nodes (strong scal-
ing).mpi_i means the MPI parcelport with the send imme-
diate optimization.mpi means the MPI parcelport without
the send immediate optimization. lci represents the default
configuration a.k.a lci_psr_cq_rp_i.

better as the node count increases. Compared to mpi_i, the MPI
parcelport with send immediate optimization, we get up to 13.6x
speedup on SDSC Expanse and 1.08x speedup on Rostam. Compared
to mpi, the original MPI parcelport, we get up to 1.175x speedup on
SDSC Expanse and 1.04x speedup on Rostam. The LCI parcelport
does not get much speedup on Rostam potentially due to the limited
node count. The comparison between mpi and mpi_i shows that
aggregation helps the MPI parcelport on both platforms. mpi_i is
very inefficient on SDSC Expanse, potentially due to its high CPU
core count. Profiling results show that it spent the vast majority
of time inside the MPI_Test function, spinning on the blocking
lock of the ucp_progress function. This shows the importance of
using atomic operations and/or fine-grained try-lock instead of
coarse-grained blocking lock to ensure thread safety.

We also performed some experiments to study the different LCI
parcelport configurations with Octo-Tiger. However, Octo-Tiger
does not stress communication as hard as the microbenchmarks.
We found that the performance differences between the different
configurations were obscured by the background noise from the
Octo-Tiger layer. As a result, we leave this study to future work.

6 RELATEDWORK
There is a significant amount of research on Asynchronous Many-
Task Systems in recent years. Some, such as the task constructs of
OpenMP [2], Cilk [13], or Intel Threading Building Blocks [18], tar-
get sharedmemorymultiprocessors and require anMPI+X program-
ming model to expand beyond one node. On the other hand, there
are task systems that have their own inter-node communication
layers. Examples of such systems include PaRSEC [7], Legion [4],
HPX [15, 16], DDDF [10], StarPU [1], and TaskTorrent [8]. There
are differences in how much they expose the details of inter-node
communication to users but users generally should not and need

not make calls to external communication libraries. This simplifies
programming and allows for better integration of the communica-
tion library with the scheduler. This paper is about HPX, a system
in the second category, but MPI+task systems share many similar
challenges.

There is a range of communication libraries and languages in
the parallel computing area. MPI [23] has been the most popular
one, well-supported on almost all platforms, and is usually the first
choice when people start to develop new applications. UPC [12],
UPC++ [3], and OpenSHMEM [9] focus on one-sided communi-
cation and the PGAS programming model, which provides users
with an abstraction of shared memory across nodes. While the
previous communication libraries/languages are intended to be
directly used by applications, GASNet-EX [6], Libfabric [24], and
UCX [27] are low-level communication libraries designed to sup-
port higher-level systems. GASNet-EX focuses on one-sided active
messages and RDMA operations. It uses an event handler similar
to MPI_Request to test/wait for nonblocking operations. Libfabric
has both two-sided send-receive and one-sided RDMA operations
and uses completion queues for completion notification. UCX has
both two-sided send-receive, one-sided active message, and RDMA
operations and uses callback functions for completion notification.

A few existing works study the communication layer of dis-
tributed task systems. HCMPI [10] provides an MPI wrapper to
make the task scheduler aware of the communication jobs. It fun-
nels all MPI calls to a dedicated communication thread due to the
inefficiency of multithreaded MPI and polls a list of pending MPI
requests using MPI_Test regularly. PaRSEC uses MPI and LCI as its
communication backend. The MPI backend has been described in
[26]. The MPI implementation also funnels most MPI calls to a dedi-
cated communication thread. It uses MPI_Testsome on a small array
of pending requests to mitigate the overhead of request polling.
[26] proposes a newMPI functionality of attaching callbacks to MPI
requests to further optimize the polling for pending communica-
tion. [22] studied the integration between PaRSEC and LCI. It uses a
dedicated communication thread and a dedicated progress thread to
handle the communication. [5] briefly describe the communication
layers of Charm++ and focus on eliminating the memory copies of
communication inside the Charm++ runtime.

Although this work and [22] share the same communication
libraries, we work on different task systems with different com-
munication layer abstractions, and thus the usage of LCI becomes
different. We also use different microbenchmarks and benchmarks
to evaluate the systems and design decisions. These two works
should be seen as complementary and prove the generality of LCI.

7 CONCLUSION
We have studied microbenchmark and benchmark results in depth
in the previous sections. In this section, we summarize the main
lessons we learn from these results and discuss future work.

7.1 Main Lessons
The LCI parcelport outperforms theMPI parcelport in almost
all cases, sometimes by a substantial proportion: It seems that
(multithreaded) MPI has a difficult time when dealing with a large
number of concurrent messages: Latency increases (Fig. 8 and Fig. 9)

SC-W 2023, November 12–17, 2023, Denver, CO, USA Jiakun Yan, Hartmut Kaiser, and Marc Snir

and the message rate sharply decreases (Fig. 1 and Fig. 4). The most
significant indication is provided by Fig. 10 where mpi_i becomes
13.6x slower when running Octo-Tiger on SDSC Expanse. Profiling
results confirm that it is due to the use of coarse-grained blocking
locks inside MPI/UCX layer.
Message aggregation yields mixed results: Our microbench-
marks show that aggregation helps with the communication per-
formance when the underlying software stack cannot function
efficiently under high stress of message injection, such as the case
for mpi/mpi_i and lci_sr_cq_pin/lci_sr_cq_pin_i. The most notable
benefit is that it could help MPI avoid abysmal performance when
running Octo-Tiger on SDSC Expanse (Fig. 10). However, the ben-
efit of less stress for the underlying network stack is balanced by
the additional software overhead of aggregation and the balance
depends on the communication characteristics. For example, aggre-
gation cannot help the LCI parcelport for the message rate of large
messages (Fig. 4) and latency (Fig. 7). This trade-off has also been
observed by previous research [25].
Using a dedicated progress thread is almost always helpful:
Having multiple threads making progress will lead to more thread
contention and cache misses in the progress engine and a less stable
response to the network events. Microbenchmark results show that
it will constrain the 8B message rate to around 285K/s and the
16KiB message rate to around 150K/s. A dedicated progress thread
alleviates the bottleneck by 2.6x (Fig. 3) and 1.5x (Fig. 6) respectively.
It also helps with the message latency (Fig. 7).
Polling one completion queue is preferable to polling multi-
ple requests or synchronizers: Request objects are useful when
users want to synchronize individual operations. However, for ap-
plications such as task systems that are event-driven and do not
care about completion ordering, polling one completion queue leads
to fewer CPU cycles and less thread contention than polling a pool
of individual requests. In the 16Kib message rate microbenchmark,
request pools constrain the message rate to 170K/s and completion
queues lift the bar by 30% (Fig. 6). All the variants with completion
queues also exhibit a much smoother line than their counterparts
with request pool (Fig. 5). It does not have effects on other mi-
crobenchmarks because they do not have a large number of pending
requests.
Aputwith a remote completion (queue) signal achieves better
performance than send-recv at high short-message rates: This
is shown by the 3.5x performance gap for the 8B message rate in
Fig. 2 between lci_psr_cq_pin_i, and lci_sr_cq_pin_i. A possible
reason is the advantage of not posting receives and matching sends
to receives, thus reducing the thread contention on the progress
engine. However, in many other cases, variants with the put show
similar performance compared to their send-recv counterpart. The
use of puts also simplifies programming.

7.2 Future Work
The multithreaded performance of the LCI parcelport is far from
optimal. Modern Mellanox NICs can reach a peak message rate of
more than 100 Mpps [17]. This should be translated to at least tens
of millions of parcels per second for the HPX parcelport layer. How-
ever, the current LCI parcelport barely reaches 750K/s. We attribute

a large part of this gap to the contention on low-level network re-
sources. Currently, the LCI parcelport only uses one LCI device per
process which maps to one low-level network context per process.
This causes severe thread contention when the sender injects mes-
sages into the network. Previous work [29][30][19][14] has shown
that replicating low-level network resources could greatly increase
message rates at the network microbenchmark level. However, it
is tricky to correctly and efficiently use multiple instances of net-
work resources for a task system. We plan to pursue this important
research topic in our future work.

We can roughly classify the performance improvements with
LCI into two categories: (a) The performance difference between
lci_psr_cq_pin_i and lci_sr_sy_mt shows the contributions from the
HPX parcelport layer enabled by the more flexible and versatile
LCI API. (b) The performance difference between lci_sr_sy_mt_i
and mpi_i shows the contributions from the communication li-
brary layer due to the better multithreaded performance of LCI. We
mainly covered the parcelport layer improvements in this paper.
There are many important design decisions in the LCI layer that
affects the task system performances that we have not discussed
here due to page limitations.

It would be nice to compare LCI not only with MPI but also with
other communication libraries. Other HPX parcelports are currently
under development and we shall be able to pursue this direction
once the development completes. Since many of the OpenMPI com-
munication calls that are used by the MPI parcelport directly call
the corresponding UCX functions with only a thin layer, we think
that part of the performance gap between the MPI parcelport and
the LCI one will persist if MPI is replaced by UCX, with no further
design changes.

ACKNOWLEDGMENTS
The authors would like to thank Patrick Diehl and Gregor Daiss for
their advice on compiling and running Octo-Tiger and the Center
of Computation and Technology at Louisiana State University for
providing access to its Rostam cluster. This research was supported
in part by NSF grants 1908144 and 1909015. This work used the
Expanse system at the San Diego Supercomputer Center through
ACCESS allocation CCR130058.

REFERENCES
[1] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacre-

nier. 2011. StarPU: a unified platform for task scheduling on heterogeneous
multicore architectures. Concurrency and Computation: Practice and Experience
23, 2 (2011), 187–198. https://doi.org/10.1002/cpe.1631

[2] Eduard Ayguade, Nawal Copty, Alejandro Duran, Jay Hoeflinger, Yuan Lin, Fed-
erico Massaioli, Xavier Teruel, Priya Unnikrishnan, and Guansong Zhang. 2009.
The Design of OpenMP Tasks. IEEE Transactions on Parallel and Distributed
Systems 20, 3 (2009), 404–418. https://doi.org/10.1109/TPDS.2008.105

[3] John Bachan, Scott B. Baden, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil,
Dan Bonachea, Paul H. Hargrove, and Hadia Ahmed. 2019. UPC++: A High-
Performance Communication Framework for Asynchronous Computation. In
2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
963–973. https://doi.org/10.1109/IPDPS.2019.00104

[4] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012. Legion:
Expressing locality and independence with logical regions. In 2012 International
Conference on High Performance Computing, Networking, Storage and Analysis
(SC12). IEEE/ACM, 1–11. https://doi.org/10.1109/SC.2012.71

[5] Nitin Bhat, Sam White, and Laxmikant V. Kale. 2022. Enabling Support for
Zero Copy Semantics in an Asynchronous Task-Based Programming Model. In
Euro-Par 2021: Parallel Processing Workshops, Ricardo Chaves, Dora B. Heras,
Aleksandar Ilic, Didem Unat, Rosa M. Badia, Andrea Bracciali, Patrick Diehl,

https://doi.org/10.1002/cpe.1631
https://doi.org/10.1109/TPDS.2008.105
https://doi.org/10.1109/IPDPS.2019.00104
https://doi.org/10.1109/SC.2012.71

Design and Analysis of the Network Software Stack of an Asynchronous Many-task System SC-W 2023, November 12–17, 2023, Denver, CO, USA

Anshu Dubey, Oh Sangyoon, Stephen L. Scott, and Laura Ricci (Eds.). Springer
International Publishing, Cham, 496–505.

[6] Dan Bonachea and Paul H. Hargrove. 2018. GASNet-EX: A High-Performance,
Portable Communication Library for Exascale. In Languages and Compilers for
Parallel Computing: 31st International Workshop (LCPC 2018). Springer, 138–158.
https://doi.org/10.1007/978-3-030-34627-0_11

[7] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas
Herault, and Jack J. Dongarra. 2013. PaRSEC: Exploiting Heterogeneity to En-
hance Scalability. Computing in Science & Engineering 15, 6 (Nov. 2013), 36–45.
https://doi.org/10.1109/MCSE.2013.98

[8] Léopold Cambier, Yizhou Qian, and Eric Darve. 2020. TaskTorrent: a Lightweight
Distributed Task-Based Runtime System in C++. , 16-26 pages. https://doi.org/
10.1109/PAWATM51920.2020.00007

[9] Barbara Chapman, Tony Curtis, Swaroop Pophale, Stephen Poole, Jeff Kuehn,
Chuck Koelbel, and Lauren Smith. 2010. Introducing OpenSHMEM: SHMEM
for the PGAS Community. In Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model (New York, New York, USA) (PGAS ’10).
Association for Computing Machinery, New York, NY, USA, Article 2, 3 pages.
https://doi.org/10.1145/2020373.2020375

[10] Sanjay Chatterjee, Sagnak Tasırlar, Zoran Budimlic, Vincent Cavé, Milind Chabbi,
MaxGrossman, Vivek Sarkar, and Yonghong Yan. 2013. Integrating Asynchronous
Task Parallelism with MPI. In 2013 IEEE 27th International Symposium on Parallel
and Distributed Processing. 712–725. https://doi.org/10.1109/IPDPS.2013.78

[11] Hoang-Vu Dang, Roshan Dathathri, Gurbinder Gill, Alex Brooks, Nikoli Dryden,
Andrew Lenharth, Loc Hoang, Keshav Pingali, and Marc Snir. 2018. A Light-
weight Communication Runtime for Distributed Graph Analytics. In 32nd IEEE
International Parallel and Distributed Processing Symposium (IPDPS 2018). IEEE,
980–989. https://doi.org/10.1109/IPDPS.2018.00107

[12] Tarek El-Ghazawi and Lauren Smith. 2006. UPC: Unified Parallel C. In Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing (Tampa, Florida) (SC ’06).
Association for Computing Machinery, New York, NY, USA, 27–es. https://doi.
org/10.1145/1188455.1188483

[13] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The Implementa-
tion of the Cilk-5 Multithreaded Language. In Proceedings of the ACM SIGPLAN
1998 Conference on Programming Language Design and Implementation (Montreal,
Quebec, Canada) (PLDI ’98). Association for Computing Machinery, New York,
NY, USA, 212–223. https://doi.org/10.1145/277650.277725

[14] Khaled Z. Ibrahim and Katherine Yelick. 2014. On the Conditions for Efficient
Interoperability with Threads: An Experience with PGAS Languages Using Cray
Communication Domains. In Proceedings of the 28th ACM International Conference
on Supercomputing (Munich, Germany) (ICS ’14). Association for Computing
Machinery, New York, NY, USA, 23–32. https://doi.org/10.1145/2597652.2597657

[15] Hartmut Kaiser et al. 2020. HPX - The C++ Standard Library for Parallelism and
Concurrency. Journal of Open Source Software 5, 53 (2020), 2352.

[16] Hartmut Kaiser et al. 2023. STEllAR-GROUP/hpx: HPX V1.9.0: The C++ Standards
Library for Parallelism and Concurrency. https://doi.org/10.5281/zenodo.598202

[17] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design Guide-
lines for High Performance RDMA Systems. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16). USENIX Association, Denver, CO, 437–450. https:
//www.usenix.org/conference/atc16/technical-sessions/presentation/kalia

[18] Wooyoung Kim and Michael Voss. 2011. Multicore Desktop Programming with
Intel Threading Building Blocks. IEEE Software 28, 1 (2011), 23–31. https:
//doi.org/10.1109/MS.2011.12

[19] Wenbin Lu, Tony Curtis, and Barbara Chapman. 2019. Enabling Low-Overhead
Communication in Multi-threaded OpenSHMEM Applications using Contexts. In
2019 IEEE/ACM Parallel Applications Workshop, Alternatives To MPI (PAW-ATM).
47–57. https://doi.org/10.1109/PAW-ATM49560.2019.00010

[20] Patrick MacArthur, Qian Liu, Robert D. Russell, Fabrice Mizero, Malathi Veer-
araghavan, and John M. Dennis. 2017. An Integrated Tutorial on InfiniBand,
Verbs, and MPI. IEEE Communications Surveys & Tutorials 19, 4 (2017), 2894–2926.
https://doi.org/10.1109/COMST.2017.2746083

[21] Dominic CMarcello, Sagiv Shiber, Orsola DeMarco, Juhan Frank, Geoffrey CClay-
ton, Patrick M Motl, Patrick Diehl, and Hartmut Kaiser. 2021. octo-tiger: a new,
3D hydrodynamic code for stellar mergers that uses hpx parallelization. Monthly
Notices of the Royal Astronomical Society 504, 4 (04 2021), 5345–5382. https:
//doi.org/10.1093/mnras/stab937 arXiv:https://academic.oup.com/mnras/article-
pdf/504/4/5345/37975469/stab937.pdf

[22] Omri Mor, George Bosilca, and Marc Snir. 2023. Improving the Scaling of an
Asynchronous Many-Task Runtime with a Lightweight Communication Engine.
In Proceedings of the 52nd International Conference on Parallel Processing (Salt
Lake City, UT, USA) (ICPP ’23). Association for Computing Machinery, New York,
NY, USA, 153–162. https://doi.org/10.1145/3605573.3605642

[23] MPI Forum. 1993. MPI: a message passing interface. In 1993 ACM/IEEE Conference
on Supercomputing (SC93). ACM, 878–883. https://doi.org/10.1145/169627.169855

[24] OFI Working Group (OFIWG). 2023. Libfabric Programmer’s Manual.
[25] C.D. Pham and C. Albrecht. 1999. Optimizing message aggregation for parallel

simulation on high performance clusters. InMASCOTS ’99. Proceedings of the Sev-
enth International Symposium on Modeling, Analysis and Simulation of Computer

and Telecommunication Systems. 76–83. https://doi.org/10.1109/MASCOT.1999.
805042

[26] Joseph Schuchart, Philipp Samfass, Christoph Niethammer, José Gracia, and
George Bosilca. 2021. Callback-based completion notification using MPI Con-
tinuations. Parallel Comput. 106 (2021), 102793. https://doi.org/10.1016/j.parco.
2021.102793

[27] Pavel Shamis, Manjunath Gorentla Venkata, M. Graham Lopez, Matthew B. Baker,
Oscar Hernandez, Yossi Itigin, Mike Dubman, Gilad Shainer, Richard L. Graham,
Liran Liss, Yiftah Shahar, Sreeram Potluri, Davide Rossetti, Donald Becker, Dun-
can Poole, Christopher Lamb, Sameer Kumar, Craig Stunkel, George Bosilca, and
Aurelien Bouteiller. 2015. UCX: An Open Source Framework for HPC Network
APIs and Beyond. In 2015 IEEE 23rd Annual Symposium on High-Performance
Interconnects. 40–43. https://doi.org/10.1109/HOTI.2015.13

[28] Marc Snir, Hoang-Vu Dang, Omri Mor, and Jiakun Yan. 2023. LCI: A Lightweight
Communication Interface v1.7. https://github.com/uiuc-hpc/LC/blob/icpp23/
doc/LCI.pdf

[29] Rohit Zambre, Aparna Chandramowlishwaran, and Pavan Balaji. 2018. Scalable
Communication Endpoints for MPI+Threads Applications. In 2018 IEEE 24th
International Conference on Parallel and Distributed Systems (ICPADS). 803–812.
https://doi.org/10.1109/PADSW.2018.8645059

[30] Hui Zhou, Ken Raffenetti, Yanfei Guo, and Rajeev Thakur. 2022. MPIX Stream:
An Explicit Solution to Hybrid MPI+X Programming. In Proceedings of the 29th
European MPI Users’ Group Meeting (Chattanooga, TN, USA) (EuroMPI/USA ’22).
Association for Computing Machinery, New York, NY, USA, 1–10. https://doi.
org/10.1145/3555819.3555820

https://doi.org/10.1007/978-3-030-34627-0_11
https://doi.org/10.1109/MCSE.2013.98
https://doi.org/10.1109/PAWATM51920.2020.00007
https://doi.org/10.1109/PAWATM51920.2020.00007
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1109/IPDPS.2013.78
https://doi.org/10.1109/IPDPS.2018.00107
https://doi.org/10.1145/1188455.1188483
https://doi.org/10.1145/1188455.1188483
https://doi.org/10.1145/277650.277725
https://doi.org/10.1145/2597652.2597657
https://doi.org/10.5281/zenodo.598202
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://doi.org/10.1109/MS.2011.12
https://doi.org/10.1109/MS.2011.12
https://doi.org/10.1109/PAW-ATM49560.2019.00010
https://doi.org/10.1109/COMST.2017.2746083
https://doi.org/10.1093/mnras/stab937
https://doi.org/10.1093/mnras/stab937
https://arxiv.org/abs/https://academic.oup.com/mnras/article-pdf/504/4/5345/37975469/stab937.pdf
https://arxiv.org/abs/https://academic.oup.com/mnras/article-pdf/504/4/5345/37975469/stab937.pdf
https://doi.org/10.1145/3605573.3605642
https://doi.org/10.1145/169627.169855
https://doi.org/10.1109/MASCOT.1999.805042
https://doi.org/10.1109/MASCOT.1999.805042
https://doi.org/10.1016/j.parco.2021.102793
https://doi.org/10.1016/j.parco.2021.102793
https://doi.org/10.1109/HOTI.2015.13
https://github.com/uiuc-hpc/LC/blob/icpp23/doc/LCI.pdf
https://github.com/uiuc-hpc/LC/blob/icpp23/doc/LCI.pdf
https://doi.org/10.1109/PADSW.2018.8645059
https://doi.org/10.1145/3555819.3555820
https://doi.org/10.1145/3555819.3555820

	Abstract
	1 Introduction
	2 Software Stack Overview
	2.1 LCI
	2.2 HPX Network Stack

	3 Design
	3.1 The MPI parcelport
	3.2 The LCI parcelport

	4 Microbenchmarks
	4.1 Message Rate
	4.2 Latency

	5 Application Benchmark
	6 Related Work
	7 Conclusion
	7.1 Main Lessons
	7.2 Future Work

	Acknowledgments
	References

