23
24
25
26
27
28
29

39
40
41
42
43
44

LCI: a Lightweight Communication Interface for Efficient
Asynchronous Multithreaded Communication

Jiakun Yan
jiakuny3@illinois.edu
University of Illinois Urbana-Champaign
Urbana, IL, USA

Abstract

The evolution of architectures, programming models, and algo-
rithms is driving communication towards greater asynchrony and
concurrency, usually in multithreaded environments. We present
LCI, a communication library designed for efficient asynchronous
multithreaded communication. LCI provides a concise interface that
supports common point-to-point primitives and diverse completion
mechanisms, along with flexible controls for incrementally fine-
tuning communication resources and runtime behavior. It features
a threading-efficient runtime built on atomic data structures, fine-
grained non-blocking locks, and low-level network insights. We
evaluate LCI on both Inifiniband and Slingshot-11 clusters with mi-
crobenchmarks and two application-level benchmarks. Experiment
results show that LCI significantly outperforms existing commu-
nication libraries in various multithreaded scenarios, achieving
performance that exceeds the traditional multi-process execution
mode and unlocking new possibilities for emerging programming
models and applications.

Keywords

Communication Library, Multithreaded Message Passing, MPI, LCI,
GASNet-EX

1 Introduction

High-performance computing (HPC) architectures have become
increasingly heterogeneous with extensive on-node parallelism [26,
33], while applications employ complex algorithms with sparsity or
adaptivity [1, 25, 35]. In addition, new asynchronous, task-oriented
programming models with runtime resource management and
scheduling are becoming more popular [5, 9, 12, 28]. These trends
are leading to a shift of application communication character-
istics: multiple threads can logically initiate communications si-
multaneously; more asynchronous point-to-point communications
are being used, as opposed to collective communication of bulk-
synchronous styles; and there can be more simultaneously pending

fine-grained communications and more opportunities for computation-

communication overlap.

These characteristics fall out of the original focus of MPI, the de
facto standard HPC communication library designed over 30 years
ago. Since then, new communication libraries and MPI features
have been introduced to tackle the asynchrony. Multiple research
efforts, mainly by the MPI community, have been taken to improve
multithreaded communication support. However, they still fall short
of the needs of applications due to limited flexibility and constrained
design space.

Marc Snir
snir@illinois.edu
University of Illinois Urbana-Champaign
Urbana, IL, USA

o Limited Flexibility: Each communication library only offers a
limited selection of communication mechanisms. However, mod-
ern programming systems and/or applications can need com-
binations of many communication mechanisms. Clients often
must implement their communication mechanisms on top of
the existing library interface. This requires a significant effort
and is not optimal when the library does not expose low-level
functionality.

e Constrained Design Space: Most communication libraries were
not designed with multithreaded performance in mind from the
beginning. Existing efforts to improve multithreaded communi-
cation support (mainly for MPI) are hence handicapped by legacy
code base and backward compatibility concerns, resulting in a
solution that is not optimal in terms of both performance and
programmability.

Suboptimal communication support, in turn, complicates the inno-
vation of new programming models, forcing developers to adopt
workarounds such as funneling communication through a single
thread [49], hacking into inner communication layers [13], or using
proxy processes for communication progressing [58].

To address these issues, we present the Lightweight Commu-
nication Interface (LCI), a communication library designed from
scratch with asynchronous multithreaded communication in mind.
It provides a unified interface that supports flexible combinations
of all common point-to-point communication primitives, includ-
ing send-receive, active messages, and RMA put/get (with/with-
out notification), and various built-in mechanisms to synchronize
with pending communications, including synchronizers, comple-
tion queues, function handlers, and completion graphs. In addition,
the interface offers both a simple starting point for users to program
and a wide range of options for them to incrementally fine-tune
the communication resources and runtime behaviors, minimizing
potential interference between communication and computation.
Finally, it is supported by a lightweight and efficient runtime opti-
mized for threading efficiency and massive parallelism. The runtime
is built with a deep understanding of low-level network activities
and employs optimizations such as atomic-based data structures,
thread-local storage, and fine-grained nonblocking locks.

We evaluate LCI with microbenchmarks, a k-mer counting mini-
app, and an astrophysics AMT-based application on Infiniband
and Slingshot-11 clusters. The results show that LCI outperforms
existing communication libraries, including standard MPI, MPICH
with the VCI extension, and GASNet-EX, by a large margin in
multithreaded performance while maintaining comparable single-
threaded performance.

The rest of the paper is organized as follows: Section 2 discusses
related works. Section 3 introduces LCI's communication interface

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116

https://orcid.org/0000-0002-6917-5525
https://orcid.org/0000-0002-3504-2468

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

Conference’17, July 2017, Washington, DC, USA

and shows how it can seamlessly support dynamic programming
systems. Section 4 presents the key designs in LCI runtime. Section 5
analyzes the evaluation results. Section 6 concludes the paper and
discusses future works.

2 Related Work

2.1 Asynchronous Communication

MPI-1 [45] was designed around coordinated communication paradigms,

including two-sided send-receive and collective operations. It was
developed at a time when most HPC applications followed the Bulk-
Synchronous Parallel (BSP) programming model, which alternates
computation and communication phases, effectively synchroniz-
ing all cores in the system. The BSP model becomes increasingly
problematic as core counts increase, their compute speeds vary,
and applications become more irregular. In contrast, asynchronous
models allow threads to issue communication in an uncoordinated
manner.

New MPI features have been proposed since then to improve
support for asynchronous communication. RMA operations have
been included in MPI since MPI-2, though its "window" abstraction
still operates in a partially collective style. The MPI continuation
proposal [43] recently introduced a way for clients to attach call-
backs to pending MPI operations, aiming for more efficient polling
in the case of heavy communication overlapping.

A range of communication libraries has also been proposed.
GASNet[11] and the later GASNet-EX [10] focus on one-sided
active messages and RMA primitives. They are intended to be
used by runtime developers or as a compilation target, so their
interfaces are generally more complicated than MPIL At a higher
level, PGAS libraries/languages, such as UPC [20], UPC++ [7], and
OpenSHMEM][14], rely on RMA operations to maintain a global ad-
dress abstraction. Recently, new communication libraries have been
proposed. YGM [47] features a batch-processing active messages
interface and utilizes aggregation for better throughput. UNR [21]
emphasizes notifiable RMA operations, optimizing them for multi-
NIC aggregation and ease of use.

UCX[44] and Libfabric[41] provide low-level abstractions that
are portable across multiple interconnects. They offer more flexible
interfaces but at a much lower level. They also require manual boot-
strap. Their primary usage is to support communication libraries
rather than high-level programming systems/applications.

While these libraries have made significant progress in support-
ing asynchronous communication, they often provide a limited
selection of features that cannot fully fulfill the communication
needs of complicated runtime systems/applications. LCI improves
upon these libraries by providing a more comprehensive and flex-
ible interface that allows for a broader range of communication
patterns and optimizations. It also has an additional performance
focus on multithreaded communication. [52] presents an overview
and some considerations of an earlier version of the LCI interface
in a workshop paper.

2.2 Multithreaded Communication

All major communication libraries can be configured to be thread-
safe, but the resulting performance is often suboptimal. The work
on MPI and GASNet started when processors had a single core, so

Jiakun Yan and Marc Snir

multithreading was not a concern. Some aspects of the interface
design proved problematic when multithreading was retrofitted.
Furthermore, as early applications were single-threaded, MPI im-
plementers focused on single-threaded performance. Consequently,
users kept communication single-threaded (one process per core
or one communication thread per process model), reinforcing the
emphasis on single-threaded performance.

Most of the existing work related to multithreaded communica-
tion optimization is based on MPI, primarily for MPICH. Assuming
that serialized access to some shared resources is unavoidable, a
line of work [3, 4, 8, 19, 42] studies various ways to reduce the lock
contention inside MPI, including minimizing the scope of critical
sections and smart lock management strategies that use priorities.
Recent research has explored ways to remove the need for seri-
alization by replicating low-level network resources. Some of it
[42, 55, 56] conforms to the MPI specification by associating dis-
tinct network resources with distinct communicators and/or tags.
Other research, including the endpoint proposal [17, 18, 46, 53]
and the later MPICH stream proposal [57], directly add new con-
structs to the MPI standard, giving users direct control over net-
work resource mappings. Similar ideas have also been adopted
in OpenSHMEM ([34] and GASNet-EX [27] to improve the multi-
threaded performance of RMA operations (but not for GASNet-EX’s
active message due to its progress semantics). Their approaches
are relatively more direct than those proposed for MPI, as RMA
operations generally do not need to bother with the progress guar-
antee and matching semantics. [23, 24] use message aggregation
across threads to alleviate the multithreaded performance penalty.
It has been included in the MPI 4.0 specification as partitioned
communication.

Our work builds upon the valuable insights of existing works
and advances them through completely redesigning the commu-
nication interface and runtime, free from backward compatibility
concerns. By adopting appropriate interface options and seman-
tics, decomposing the runtime into multiple independent resources,
and applying various optimization techniques, we present a com-
munication library that, for the first time known to us, achieves
multithreaded performance surpassing multi-process performance
at the microbenchmark level.

3 LCI Interface

The LCI interface is designed to be intuitive, flexible, and explicit,
allowing LCI to be seamlessly integrated into complicated runtimes
with diverse communication needs. We first present the Objectifed
Flexible Functions (OFF) idiom that allows users to specify optional
arguments in any order as a C++ function call. All LCI functions
have a variant adopting this idiom. We then walk through the
core LCI interface by building an LCI backend for a simple Remote
Procedure Call (RPC) library. Finally, we discuss other important
details of the LCI interface.

3.1 Objectified Flexible Function

The LCI interface is designed to be flexible and customizable, allow-
ing users to express their communication needs in a straightforward
and efficient manner. As a result, some LCI operations have many
optional arguments. The C++ optional argument semantic is not

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289
290

o

-

=

LCI: a Lightweight Communication Interface for Efficient Asynchronous Multithreaded Communication

flexible enough to handle them, as it only allows users to specify
the optional arguments in the order they are defined with no gaps.

We propose a new C++ idiom called Objectified Flexible Function
(OFF) to overcome this restriction. It allows users to specify the
optional arguments in any order, similar to the named optional
arguments in Python functions. Listing 1 shows what it is like to
invoke an OFF operation using the post_send operation in LCI as
an example. Line 1 invokes the post_send operation in its standard
form with only the positional arguments. Lines 2-3 invoke the OFF
variant of the same operation. Line 2 associates the send with a
specific device, and Line 3 further specifies the rank_only matching
policy. The OFF variant in LCI is always suffixed with _x.

auto ret = post_send(rank, buf, size, tag, comp);

auto ret = post_send_x(rank, buf, size, tag, comp).device
(device) ();

auto ret = post_send_x(rank, buf, size, tag, comp).

matching_policy(matching_policy_t::rank_only).device
(device) ();

Listing 1: Objectified Flexible Function Example.

The OFF idiom allows LCI to maintain the API’s conciseness
while providing as much flexibility as possible. The user can start
from the simplest form and incrementally refine the communication
behavior in any direction they need.

Under the hood, an OFF is implemented as a functor with a
constructor that takes the positional arguments and a set of setter
methods for the optional arguments. We use a Python script to
generate the OFF definition based on a DSL input.

3.2 Example: LCI for iRPCLib

3.2.1 The iRPCLib Example. Remote Procedure Calls (RPCs) are
a popular programming paradigm that allows a client to invoke
arbitrary functions on a server. The main difference between RPC
and active message is that the active message handler is executed
inside the low-level communication progress engine and thus is
supposed to be short with restricted functionalities (e.g., cannot
invoke another communication). In contrast, RPC handlers usu-
ally have no restrictions. RPCs are used extensively in high-level
programming models [7, 29, 37]. This section illustrates the LCI
interface by building an LCI backend for an imaginary RPC library
(iRPCLib).

// shared resources

lci::comp_t shandler; // send completion handler
lci::comp_t rcq; // receive completion queue
lci::rcomp_t rcomp; // remote completion handle for rcq
// thread-local resources

__thread lci::device_t device;

// callback for source-side completion
void send_cb(status_t status) {
// free the message buffer once the send is done
std::free(status.buf);
3}
void global_init(int *rank_me, int *rank_n) {
lci::g_runtime_init();
*rank_me = lci::get_rank_me();
*rank_n = lci::get_rank_n();
shandler = lci::alloc_handler (upper_layer::send_cb);
rcqg = lci::alloc_cq();
rcomp = lci::register_rcomp(rcq);

66

68
69
70

71

Conference’17, July 2017, Washington, DC, USA

void global_fina() {
lci::free_comp(&shandler);
lci::free_comp(&rcq);
lci::g_runtime_fina();

3

void thread_init() {
device = lci::alloc_device();

}

void thread_fina() {
lci::free_device (&device);

}

bool send_msg(int rank, voidx buf, size_t s, int tag) {
lci::status_t status = lci::post_am_x(rank, buf, s,
shandler, rcomp).tag(tag).device(device)();
if (status.error.is_retry())
return false; // the send failed temporarily
if (status.error.is_done())
send_cb(status); // the send immediately completed
else
assert(status.error.is_posted());
return true; // the send succeeded

}

// msg_t is a message descriptor type
// defined in the upper layer
bool poll_msg(msg_t x*msg) {
lci::status_t status = lci::cq_pop(cq);
if (status.error.is_done()) {
lci::buffer_t buf = status.get_buffer();
*msg = {
.rank = status.rank,
.tag = status.tag,
.buf = buf.base,
.size = buf.size,
}
// the upper layer is responsible for freeing the
// buffer once it consumes the message
return true;
} else {
assert(status.error.is_retry());
return false;
}
}

bool do_background_work () {
return lci::progress_x().device(device)();

}

Listing 2: The example implementation of the iRPCLib LCI
backend.

Listing 2 shows the example implementation of the iRPCLib LCI
backend. We assume iRPCLib has two layers, the upper layer and
the backend layer. The upper layer is responsible for registering
the user-provided RPC handlers into indices and serializing and
deserializing the RPC arguments into consecutive memory buffers
(not shown here). The backend layer is responsible for sending the
RPC handler index (tag) and serialized arguments (pointed by buf)
to the target rank (send_msg in Line 37) and deliver the incoming
messages to the upper layer (poll_msg in Line 50). For simplicity,
we assume iRPCLib just wants the backend layer to free the mes-
sage buffer once the send completes locally (send_cb in Line 9). We
further assume iRPCLib is multithreaded. The main thread will
call global_init (Line 14) and global_fina (Line 23) and all threads
will call thread_init (Line 29) and thread_fina (Line 33) during the
initialization and finalization phases. All threads can produce and
consume communication (a.k.a. calling send_msg and poll_msg).
In addition, all threads will periodically call do_background_work

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
334

336
337
338
339
340
341
342
343
344
345
346
347
348

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

Conference’17, July 2017, Washington, DC, USA

(Line 69) to make progress on the pending communication. The
backend abstraction described here is a simplified version of the
HPX parcelport abstraction [51] and the Charm++ Converse Ma-
chine Interface [30].

3.2.2 Runtime Lifecycle. LCI does not have global initialization or
finalization functions. Instead, it provides functions to (de)allocate a
runtime object. The runtime object wraps default configurations and
communication resources for LCI to operate. Most LCI operations
accept runtime as an optional argument. In Listing 2, iRPCLib just
uses the global default runtime (g_runtime) for simplicity (Lines 15,
26). Once at least one runtime is active, the user can query the
rank of the current process (Line 16) and the total number of ranks
(Line 17).

An LCI client typically allocates only one runtime object. How-
ever, multiple runtime objects can exist due to library composition.
In these cases, the runtime abstraction enables different libraries to
use different configurations and resources without interfering with
each other.

3.2.3 Resource. Communications operate on resources. LCI allows
users to allocate resources explicitly and associate them with com-
munications. Resources can have a list of attributes. Users can
explicitly set them during resource allocation and query them after-
ward. In Listing 2, iRPCLib uses one device per thread to improve
threading efficiency (Line 6). A device encapsulating a complete set
of low-level network resources and LCI ensures threads operating
on different devices will not interfere with each other. In addition,
iRPCLib uses a shared completion handler (shandler in Line 2) for
source completion and a shared completion queue (rcq in Line 3) for
target completion. Line 20 further registers the completion queue
into a remote completion handle (rcomp) for other processes to post
active messages to. (See Section 3.2.5 for more detail.)

Other important LCI resources (not shown here) include (a)

Jiakun Yan and Marc Snir

completion signaling. A completion checking operation checks the
completion objects for the completion status of posted requests.

The parameters needed to specify a communication are mostly
the same across all point-to-point communication paradigms. Dif-
ferent communication paradigms are just different choices of where
to specify these parameters. For example, send-recv specifies only
the local parameters on each side, while RMA put/get specifies all
parameters on only one side.

Therefore, LCI offers a generic communication posting opera-
tion, post_comm. This operation takes the target rank, the local
buffer, the message size, and the local completion object as po-
sitional arguments. It takes a wide range of optional arguments,
among which the most important ones include the direction, the
remote buffer, and the remote completion object. Table 1 shows how
combining the three optional arguments can specify the common
point-to-point communication paradigms.

Direc- Remote Remote

tion buffer completion Validity Description

OUT none none Yes send

OUT none specified Yes active message
OUT specified none Yes RMA put

OUT specified specified Yes RMA put w. signal
IN none none Yes receive

IN none specified No

IN specified none Yes RMA get

IN specified specified Yes RMA get w. signal

Table 1: How post_comm can be used to express all common
communication paradigms.

For convenience purposes, LCI also offers five derived communi-
cation operations: post_send/recv/am/put/get. These operations are

matching engines matching send and receive; (b) packet pools (de)allocating just syntactic sugar for post_comm with the optional arguments set

fixed-sized pre-registered internal buffers (packets); and (c) back-
log queue storing temporarily postponed communication requests.
A communication operation is free to associate with any combi-
nation of these resources. For example, if the iRPCLib also uses
send-receive, all threads can use a shared matching engine while us-
ing per-thread devices. In this way, it could achieve great threading
efficiency while maintaining a global matching domain. Section 4.1
talks about resources in more detail.

3.24 Communication Posting. Line 38 uses the LCI active message
operation to send the message along with a tag to the target rank
using the thread-local device. LCI supports all commonly used
point-to-point communication paradigms, including send/receive,
active message, and RMA put/get. It supports them in a unified
manner to reduce the API’s complexity and allow users to easily
switch between different communication models.

LCI adopts the following communication abstractions: A com-
munication moves the data from a source buffer to a target buffer.
The communication is complete on the source side when the source
buffer can be overwritten and on the target side when the target
buffer can be read. When the communication is locally complete, a
completion object will be signaled. A communication posting opera-
tion submits the parameters that specify the data movement and

to the corresponding values.

3.2.5 Operation Return Values. An LCI communication posting
operation returns a status object in one of the four categories:

e done: The operation has been completed immediately, and the
completion objects will not be signaled.

o posted: The operation has been posted, and the completion ob-
jects will be signaled when the operation is complete.

o retry: The operation needs to be resubmitted due to temporary
resource unavailability.

o fatal error: The operation has failed due to a fatal error.

Fatal errors are reported through C++ exceptions. The returned
status_t object reports the other three categories. Each category
includes multiple error codes to deliver more information (e.g.,
what resource is temporarily unavailable). When the status is done,
the returned status object contains valid information about the
completed operation.

Line 39-44 shows how iRPCLib handles these return values. It
just returns false if it gets a retry error (Line 39). In this case, the
upper layer can do something meaningful, such as polling other
task queues or aggregating RPC messages. If the communication is
immediately completed, the return status object will contain valid
information, and iRPCLib just manually invokes send_cb (Line 41).

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

446

463

465

466

467

468

469

470

471

472

473

474

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494
495

LCI: a Lightweight Communication Interface for Efficient Asynchronous Multithreaded Communication

Compared to the binary return values of MPI nonblocking op-
erations, the additional done and retry provide more informative
feedback, enabling finer-grained control and potentially unlocking
further optimization opportunities.

Completion Checking. Once a posted communication is com-
pleted, the completion object specified by the posting operation
will be signaled with a completion descriptor (the status_t object).
In the case of Listing 2, the send_cb will be automatically invoked
when the send completes on the source side, and the messages
will be enqueued into the rcg when they arrive at the target rank.
Line 51 shows how iRPCLib polls rcq for incoming messages and
decodes the status object. The returned buf is expected to be freed
by the upper layer with std::free.

Under the hood, a completion object is a functor with a virtual
signal method that takes a status_t object as an argument. Derived
from it, LCI defines four built-in completion object types: han-
dler, queue, synchronizer, and graph. Synchronizer is similar to MPI
requests but can accept multiple signals before becoming ready.
Graph is a more advanced completion object type similar to CUDA
Graph [39] that allows users to specify a set of communication
operations or user-provided functions with a partial execution or-
der. If operation u precedes operation v in that order, then v will be
started only after u completes. The local partial execution order and
the ordering imposed by communication operations allow intuitive
implementations of complex nonblocking collective algorithms.

3.2.6 Progress. In MPI, communication progressing happens as a
side effect of certain MPI calls (typically MPI Test* and all blocking
functions). In contrast, LCI defines an explicit progress function.
Users can select whether progress is invoked by a distinct thread
or as a side-effect of other operations and how frequently progress
should be called. Line 70 shows how the backend layer uses the OFF
version of the progress function to make progress on the thread-
local device.

3.3 Other Details

3.3.1 Other Advanced Features. Listing 2 assumes the upper layer
supplies plain send buffers, and LCI also uses plain buffers to de-
liver incoming active messages. Alternatively, advanced users can
explicitly ask LCI for packets and directly assemble the message in
it. They can also instruct LCI to deliver incoming active messages
in packets. These practices can save memory copy for buffer-copy
protocol.

In addition, LCI follows the common practice of many low-level
communication libraries by providing an explicit memory regis-
tration function. Memory registration is optional for local buffers
but mandatory for remote buffers. LCI supports on-demand paging
when the underlying hardware allows it.

Besides a single source and target buffer, LCI also supports trans-
mitting a list of source and target buffers in a single communication
posting operation to reduce the overheads related to request post-
ing, handshakes, and completion signaling.

3.3.2 Send-Receive Semantics. LCI adopts the send-receive seman-
tics proposed in [16], namely, out-of-order delivery and restricted
wildcard matching, to avoid sequential bottlenecks inside the run-
time. The in-order delivery and wildcard matching have long been

Conference’17, July 2017, Washington, DC, USA

seen as a stumbling block for efficient multithreaded MPI imple-
mentation, as they require centralized matching queues that are
hard to parallelize. Weakening them allows LCI to adopt a more
efficient hashtable-based matching engine. By default, LCI matches
send and receive by the (matching engine, source rank, tag) tu-
ple on the target side. Users can still achieve in-order matching
for send-receives by encoding ordering information into the tag
field. They can also set the matching_policy optional argument to
tag_only or rank_only when posting sends and receives to achieve
wildcards similar to those of MPI, except that the sender needs to
know the sent message will be matched by a wildcard receive call.
Under the hood, the matching_policy will instruct the matching
engine on how to make the insertion key based on rank and tag.
Users can also achieve more flexible matching policies by supplying
their own make_key function.

4 LCI Runtime

Communication activities inside the LCI runtime are carefully de-
composed into operations of multiple independent resources, while
each resource is carefully optimized with threading efficiency in
mind. Key optimizations include atomic-based data structures, fine-
grained locking, thread-local storage, and try lock wrappers.

4.1 LCI Resources

4.1.1 Prerequisite: Multi-Producer-Multi-Consumer (MPMC) Array.
We find it a common need for LCI to store certain resources in an
array for future reference. Such arrays are rarely written but fre-
quently read, and the array size is usually unknown at compilation
time. For example, the registered completion object array is only
written (appended) during a new registration (usually not on the
critical path) but is read whenever an active message or RMA with
notification message is received. We do not want to preallocate a
large array as it may waste memory and restrict the total number
of registered completion objects.

To meet this need, we implement a simple MPMC array that
supports dynamic resizing and fast read. It borrows the key idea
in [2]: a write and append (and the potential resize) is protected by
alock to prevent missed writes, but read is lock-free. Every resize
swaps the old array with a new one that doubles the size, and the
deallocation of the old array is postponed to prevent the read from
reading invalid memory.

4.1.2 Packet Pool. The packet pool is responsible for efficient al-
location (get) and deallocation (put) of fixed-sized pre-registered
buffers, which we call packets. get can be nonblocking and will
return a nullptr when it fails the first packet stealing attempts (and
post_comm returns retry). The packet pool is implemented as a
collection of thread-local double-ended queues (deque). The list
of thread-local deques is managed by an MPMC array. By default,
every thread puts and gets packets from its own deque. When the
local deque is empty, the thread will try stealing half of the total
packets from a randomly selected deque. Local packet put and get
are performed at the tail end, and packet stealing is performed
at the head end to achieve better cache locality. Thread safety is
achieved with a per-deque spinlock, so there should be no thread
contention during normal operation.

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562

592

595

596

598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

Conference’17, July 2017, Washington, DC, USA

4.1.3 Matching Engine. The matching engine is responsible for
matching the incoming sends with user-posted receives at the tar-
get side. It contains two major methods: make_key generates a
matching key based on source rank, tag, and user-supplied match-
ing_policy; insert tries inserting a key-value pair with a type (send
or receive) and will either return 0, meaning the entry has been
inserted, or the matched values if an entry with the same key and
a complementary type has been found. The default implementa-
tion is based on a hashtable where each bucket is a list of queues.
Thread safety is achieved with a per-bucket spinlock, and we do
not expect severe thread contention, given that the bucket number
(by default 65536) is significantly larger than the thread number (on
the order of tens to hundreds). Special optimization is applied to the
case when a bucket contains no more than three queues and when
a queue contains no more than two sends or receives, where we
use fixed-size arrays instead of linked lists for the buckets/queues.
Therefore, when the load factor is low, the hashtable can perform
an insertion with a single cache miss.

4.1.4 Completion Objects. All LCI built-in completion objects are
atomic-based. Synchronizer is implemented as an atomic flag (when
expecting one signal) or a fixed-sized array protected by two atomic
counters (when expecting multiple signals). Completion queue has
two implementations: one based on the state-of-the-art LCRQ [38]
and the other based on a hand-written Fetch-And-Add-based fix-
sized array. Completion handler is essentially a function and does not
need any special treatment. Every node in the completion graph
uses an atomic counter to track the number of received signals.
Every ready node will be immediately fired, and a completed node
will signal all its descendants.

4.1.5 Backlog Queue. The backlog queue is used to store commu-
nication requests that cannot be immediately submitted and cannot
be back-propagated to the user. For example, when the progress
engine wants to send a handshake message, but the underlying
network send queue is full. LCI expects such scenarios to be rare,
so we implement it with a simple C++ queue with a spinlock. An
atomic flag prevents the progress engine from unnecessarily polling
an empty backlog queue.

4.2 Network Backend

4.2.1 The Network Backend Layer. LCI isolates different network
backends from its core runtime with a simple network backend
wrapper. The backend abstraction operates on two resources: net-
work context and network device. Each LCI runtime maps to a
network context, which contains global network resources. Each
LCI device maps to a network device, which contains network
resources accessed on the critical path.

All communication operations on the critical path are posted
to a network device. These operations include posting network-
layer send/recv/write/read, polling for completed operations, and
(de)registering memory. LCI does not require the ability to handle
tag matching and unexpected receive from the network backends.
The LCI progress engine ensures there are always enough pre-
posted receives in the device. LCI expects two threads operating
on different network devices not to interfere with each other.

Jiakun Yan and Marc Snir

Currently, LCI supports two full-fledged network backends: li-
bibverbs (ibv) [40] and libfabric (ofi) [41].

4.2.2 Trylock Wrapper. Lower-level network stacks such as ibv
and ofi generally use spin locks to ensure thread safety and usually
blockingly acquire them. To mitigate the cost of blocking on these
locks, we examine the backend source code to identify the lock
granularity and wrap all corresponding accesses with a try lock.
For example, an ibv completion queue is protected by a spin lock,
so we create a spin lock for each ibv completion queue at LCI layer
and try_lock the corresponding LCI-layer lock before we access the
ibv completion queue through (ibv_poll_cq). If the try lock fails, we
will return the retry error code to the caller. This gives LCI clients
more optimization opportunities during network contention.

4.2.3 libibverbs Analysis. libibverbs is the lowest-level public API
for Infiniband. It can also be run on top of High-speed Ethernet
devices through RDMA over Converged Ethernet (RoCE). We focus
on its mix5 provider here as it is the latest and most widely used one.
Each libibverbs queue pair, shared receive queue, and completion
queues are protected by their own spinlock. In addition, each queue
pair is associated with a set of hardware resources (micro User
Access Region or uUAR) that are protected by its own lock on the
host side. Different queue pairs may share the same uUAR [54].
libibverbs users can use thread domains to explicitly associate queue
pairs with uUARs. The memory (de)registration functions do not
acquire any locks.

The LCI ibv backend puts an ibv completion queue, an ibv shared
receive queue, and a collection of ibv queue pairs in a network
device. LCI uses a try lock wrapper for every ibv completion queue
and shared receive queue. An LCI device attribute ibv_td_strategy
controls the way LCI uses thread domains. By default, it will create a
thread domain for every ibv queue pair (the per_gp strategy). Users
can also ask LCI to allocate a single thread domain for all queue
pairs of a device (the all_gp strategy) or not use thread domains at
all (the none strategy). The all_gp strategy is recommended when
each thread has a dedicated LCI device. LCI uses a try lock wrapper
for every queue pair in the per_gp case and uses a try lock wrapper
for all queue pairs of the device in the other two cases.

With libibverbs, LCI can provide a contention-free guarantee
not only for threads operating on different devices but also for
threads operating on different ibv data structures (queue pairs,
completion queues, shared receive queues). This means there will
be no interference between a worker thread posting communication
and a background thread progressing the communication, which is
typical in asynchronous programming systems such as AMTs [9].

4.2.4 libfabric Analysis. libfabric is a portable low-level network
API that supports many network providers. It is also currently the
lowest-level public API for HPE Slingshot-11. The LCI ofi backend is
designed with the libfabric cxi provider and verbs provider in mind.
Both providers have similar lock granularity: every endpoint has a
single spin lock; all post_send/recv on the endpoint and poll _cq on
associated completion queues need to acquire the endpoint lock; the
memory (de)registration function involves the use of a registration
cache, which is allocated per domain and is protected with a pthread
mutex.

639
640
641
642
643
644
645
646
647
648
649

650

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

753
754

LCI: a Lightweight Communication Interface for Efficient Asynchronous Multithreaded Communication

—— -
device W 7/8. post [backlog }
queue

2. post ~
10. post 4. poll 3. retry
15

. e
L matchingw 5. insert /\progress

engine J
comp -
i 6. signal
11. check

(9. signal
Figure 1: LCI Runtime Architecture. Operations are repre-

sented as circles and resources as rectangles. The packet pool

is omitted for clarity.

1. insert

The LCI ofi backend, therefore, puts in a network device an ofi
domain, endpoint, and completion queue. It uses a single try lock
wrapper for the endpoint. It does not employ a try lock wrapper for
the memory (de)registration functions, as LCI does not yet have a
way to backpropagate the memory registration failure to the user.

In general, the current libfabric provider implementation has
a coarser lock granularity than libibverbs, which makes it less
efficient in multi-threading scenarios. However, the libfabric inter-
face is general enough to accommodate additional optimizations
in the provider implementation. libfabric defines a more advanced
FI THREAD_FID threading support level that only requires serial-
ization to individual libfabric objects. Combined with libfabric’s
scalable endpoint, it could achieve lock granularity similar to that of
libibverbs. However, current providers do not exploit this threading
support level with additional optimizations. The two providers also
do not support the scalable endpoint feature.

4.3 Communication Protocol

LCI adopts communication protocols similar to existing communi-
cation libraries, so we will briefly mention them due to page limit.
For the send-receive and active message operations, depending on
the message size, LCI adopts three different communication proto-
cols: inject, buffer-copy, and zero-copy. For put/get operations, LCI
directly translates them into the corresponding low-level network
operations. Due to the lack of support for RDMA read with notifica-
tion in the interconnects we have access to, LCI does not implement
the get with signal communication operation for the time being.

4.4 Putting Everything Together

Figure 1 shows an overview of the LCI runtime architecture. When
the user posts a communication, (1) if it is a receive, a receive de-
scriptor will be inserted into the matching engine; (2) otherwise,
the communication request will be posted to the device. When the
user invokes the progress engine, it will (3) first check the backlog
queue and retry the communication requests in that queue; and
(4) poll the device for completed operation and react accordingly.
The reaction may involve (5) inserting an incoming send into the
matching table, (6) signaling a completion object, (7) replenishing
the pre-posted receives, or (8) posting another communication re-
quest to the device as part of the rendezvous (zero-copy) protocol.
When either the communication posting procedure or the progress

Conference’17, July 2017, Washington, DC, USA

engine finds a match in the matching engine, it will either (9) sig-
nal the completion object or (10) post another communication to
continue the rendezvous protocol. (11) The completion checking
procedure will query the completion object for the status of posted
communication.

For simplicity, the figure omits the packet pool. The packet pool
can be involved in (2, 7, 8, 10) when either the user or the progress
function tries to post communication requests to the device. In
addition, the communication request could be pushed into the
backlog queue in (2) if the user disallows the retry return value
and in (7, 8, 10) as the progress engine cannot keep retrying the
communication requests.

4.5 Implementation Note

LClis implemented as a C++11 library with the CMake build system.
It is also available as a Spack package. LCI supports four bootstrap-
ping backends: PMI1, PMI2, PMIx, and MPL It has been tested on
Infiniband, RoCE, Slingshot-11, and Ethernet networks. It is fully
open-sourced with the MIT license.

5 Evaluation

5.1 Experimental Setup

We evaluate LCI on SDSC Expanse and NCSA Delta. Table 2 shows
their configuration. Expanse uses InfiniBand, which is one of the
most widely used interconnects for HPC clusters and accounts
for 61% of the Top500 systems. Delta uses Slingshot-11, which is
increasingly popular and used on 7 of the top-10 systems.! All
experiments are conducted at least six times. The figures show the
average and standard deviation.

Table 2: Platform Configuration.

Platform SDSC Expanse NCSA Delta

CPU AMD EPYC 7742 AMD EPYC 7763

sockets/node 2 2

cores/socket 64 64

NIC Mellanox ConnectX-6 HPE Cassini

Network HDR InfiniBand Slingshot-11
(2x50Gbps) (200Gbps)

Software MPICH 4.3.0 MPICH 4.3.0
GASNet 2025.2.0 GASNet 2025.2.0
UCX 1.17.0 Cray MPICH 8.1.27

Libfabric 1.21.0
Libibverbs 43.0

Libfabric 1.15.2.0

5.2 Micro-benchmarks

In asynchronous multithreaded applications, message rate and band-
width are more critical than latency due to communication over-
lapping and nonblocking execution. Therefore, we use these two
metrics to compare LCI with standard MPI, MPICH with the VCI
extension, and GASNet-EX. Our micro-benchmarks run on two
nodes with two basic modes. The process-based mode uses one pro-
cess on each core, while the thread-based setting uses one process

IStatistics are based on the TOP500 List published in Nov. 2024.

760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856

858
859
860
861
862
863
864
865
866
867
868
869

870

Conference’17, July 2017, Washington, DC, USA

w4
o 10
=) 3]
2 10
g s =~ Lal = LCI
g, 107 3 —— GASNet-EX == GASNet-EX
&
g MPICH ofi MPICH ofi
= =/ MPICH ucx =/ Cray MPICH
10 T T T 10 1 T T T
10° 10' 10° 10' 10' 10°
Core Number Core Number
(a) On Expanse (InfiniBand). (b) On Delta (Slingshot-11).

Figure 2: Process-based message rate micro-benchmark. We
use one process per core and one thread per process.

on each node with one thread per core. Each process/thread has a
peer process/thread on the other node, and it performs ping-pongs
with the peer. Existing multithreaded applications can either share
a global set of communication resources or, if the application logic
and underlying communication library permit, allocate dedicated
resources for each thread. Therefore, the thread-based mode is fur-
ther divided into two sub-modes according to the resource-sharing
pattern: (a) in the dedicated resource mode, each thread allocates
its communication resources; (b) In the shared resource mode, all
threads share a global set of communication resources. The ded-
icated resource mode is implemented with MPICH VCIs and LCI
devices. Cray-MPICH and GASNet-EX do not support this mode. We
also set mpi_assert_no_any_tag and mpi_assert_allow_overtaking
to true and configure MPIR_CVAR_CH4_GLOBAL_PROGRESS to 0
to minimize the thread contention on VClIs.

To ensure uniformity across different communication libraries,
we build a simple layer (the Lightweight Communication Wrap-
per, or LCW) on top of LCI, MPI, and GASNet-EX and use it to
write the microbenchmarks. The microbenchmarks, along with
the LCW layer, are open-sourced?. LCW implements simple non-
blocking active messages and send-receive primitives. For MPI,
it uses MPI_Isend/MPI_Irecv for send-receive and MPIL_Isend/pre-
posted MPI Irecv for active messages. For GASNet-EX, it uses
gex_AM_RequestMedium for active messages and does not sup-
port send-receive due to implementation complexity. We show the
active message results in the message rate microbenchmark and
the send-receive results in the bandwidth microbenchmark.

5.2.1 Single-threaded Performance. Figure 2 shows the single-threaded
message rate results. We fixed the message size to 8 bytes and
increased the process number from 1 to 128 per node. Each pro-
cess/thread runs 100k iterations. We report the uni-directional mes-
sage rate. LCI achieves performance comparable to the other com-
munication libraries. Figures for the single-threaded bandwidth
results are omitted due to page limit, but the results are similar.

5.2.2 Multithreaded Performance. Figure 3 shows the multithreaded
message rate results. We fixed the message size to 8 bytes and in-
creased the thread number from 1 to 128 per node. LCI achieves
significant speedups in multithreaded performance on both plat-
forms (sometimes more than 10x). In particular, multithreaded LCI
with dedicated devices achieves even slightly better performance
than multi-process LCI (around 15% at full scale). The MPICH’s

Zhttps://github.com/<anonymous>/lcw

Jiakun Yan and Marc Snir

—— ICI —{— GASNet-EX MPICH ofi ~ —/— MPICH ucx
3 10° 1
2
2
& 104
Z
2
102 3 T T T
10’ 10' 10° 10’ 10' 10°
Core Number Core Number

(a) Dedicated resources (Expanse). (b) Shared resources (Expanse).

—L— LI —{— GASNet-EX MPICH ofi ~ —/— Cray MPICH
7 4% 10"
BT 3x 100
£ 2
] 2% 10
S
a 2
é 107
2
1074 !
- . : 6% 10 . ;
10 10" 10° 10" 10' 10°
Core Number Core Number

(c) Dedicated resources (Delta). (d) Shared resources (Delta).

Figure 3: Thread-based message rate micro-benchmark. We
use one process per node and one thread per core. Dedicated
resources uses one LCI device/MPICH VCI per thread. Shared
resources uses one set of resources for the entire process.

VCI extension greatly helps multithreaded performance, but the
overall performance is still suboptimal. GASNet-EX shows good
multithreaded performance in the shared resource mode, but its
lack of resource-replication support weakens its competencies if
the application wants to use more resources.

Even though we do not directly evaluate UCX and Libfabric
due to the difficulty of bootstrapping and the complexity of their
APIs, the MPICH results on Expanse (particularly Figure 3a) give
hints on their multithreaded performance. UCX is generally faster
than libfabric on InfiniBand, but its performance degrades sharply
when there are more than 16 threads. Libfabric shows good scaling
results with dedicated resources at the cost of absolute performance
numbers. LCI achieves the best of both worlds by directly building
on the lowest-level public API, libibverbs. UCX does not support
Slingshot-11, so its results on Delta are unavailable. MPICH does
not support more than 64 VCls, so some data points are missing.

Figure 4 shows the multithreaded bandwidth results for various
message sizes. We fix the thread number to 64 to avoid inter-socket
overheads. We increase the message size from 16B to 1 MiB. Each
process/thread runs 1k iterations. We report the unidirectional
bandwidth. Similar to the message rate results, LCI also achieves
significant speedup in multithreaded bandwidth. GASNet-EX is
absent here due to its lack of send-receive support.

5.2.3 Individual Resources. LCI communications involve opera-
tions on a variety of resources. Each resource is optimized for
threading efficiency, and users can explicitly allocate multiple repli-
cas of them. Our next microbenchmark evaluates the threading
efficiency of three major LCI resources: completion queue, match-
ing engine, and packet pool. All microbenchmarks run on a single
node on Delta with different thread numbers. All threads perform

871
872
873
874
875
876
877
878

881
882
883
884
885
886
887
888

890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

986

LCI: a Lightweight Communication Interface for Efficient Asynchronous Multithreaded Communication

—— LCI MPICH ofi

3 |
10* 10
J 10' 1
10"
10’ 10' 10°

Message Size

—— MPICH ucx

Bandwidth (MB/s)

10" 10* 10

Message Size

6

(a) Dedicated resources (Expanse). (b) Shared resources (Expanse).

—— LCI MPICH ofi ~ —/— Cray MPICH
= 10*] —r =4
@ 3
;i 10
g, ,
E 1071 1
-E 10
m
10° 10" 10° 10" 10* 10"

Message Size Message Size

(c) Dedicated resources (Delta). (d) Shared resources (Delta).
Figure 4: Thread-based bandwidth micro-benchmark. We
use one process per node and one thread per core. Dedicated
resources uses one LCI device/MPICH VCI per thread. Shared
resources uses one set of resources for the entire process.

10§

£
§ 102 3 <= completion quene
E] matching engine
=%
o —ij— packet pool
2 10 3
=
=

10 10’ 10°

Thread Number

Figure 5: Maximum throughput of individual resources over
different thread numbers.

100k of key resource methods that are used in the communication
critical path (a pair of completion queue push/pop, matching en-
gine inserts, or packet pool get/put). Figure 5 shows the results. As
we can see, the packet pool and matching engine scales well with
thread number, achieving 480 Mops (Million operations per sec-
ond) or 225 Mops with 128 threads. As a reference, our ping-pong
microbenchmark achieves at most 22 Million Messages per second
(Figure 3a). This means allocating one instance of each resource per
process is sufficient. However, the completion queue only achieves
9 Mops with 128 threads, which means applications aiming for
higher throughput may need to allocate more completion queues
per process. The completion queue throughput is primarily con-
strained by how fast threads can perform the atomic fetch-and-add
operation on a shared variable. Our message rate microbenchmark
shown above uses one completion queue per thread.

Conference’17, July 2017, Washington, DC, USA

lel0 1e9

@ 151 GASNet-EX GASNet-EX (pl)
2
2 —&— HipMer (UPC++) 31 =5— HipMer (UPC++)
2 10 —— LCI == LC1
E a
ENEE
o 1 4
2
=

0.0

10 10' 10" 10’

Node Count Node Count

(a) Expanse (with InfiniBand) (b) Delta (with Slingshot-11)
Figure 6: K-mer counting strong scaling results comparing
multithreaded LCI, GASNet-EX, and single-threaded UPC++
(HipMer reference implementation). GASNet-EX (p1) means
dedicating one thread for network progress.

5.3 K-mer Counting

Our first application-level benchmark is k-mer counting, an impor-
tant step in bioinformatics for analyzing biological sequences. The
mini-app used here is based on the version used in the de novo
genome assembler HipMer[22]. With error-prone reads of DNA
sequences as its input, the k-mer counting mini-app computes the
histogram of the number of occurrences of k-mers. A read is a DNA
sequence that is shorter than the actual DNA strand, while a k-mer
is a short DNA sequence of a fixed size k.

In the k-mer counting stage, HipMer traverses the dataset twice.
The first traversal inserts the k-mers into a two-layer Bloom filter.
A Bloom filter is a space-efficient data structure that tests whether
an element is in a set with a small false positive rate. The second
traversal then consults the Bloom filter and inserts those with more
than one occurrence into a hashmap. The hashmap maintains the
actual count of the k-mers, while the two-layer Bloom filter is used
to reduce the memory footprint of the hashtable by filtering out
those occurring only once (which are likely erroneous).

HipMer is written in UPC++ with only one thread per process.
Each k-mer is statically mapped to a process using a hash func-
tion. Each process reads part of the dataset and sends the k-mers
to the mapped processes via UPC++ RPCs. It further employs an
aggregation buffer per target process to reduce communication
overhead.

We implement a multithreaded version of the HipMer k-mer
counting stage. The new implementation is also based on the RPC
abstraction and aggregation, with libcuckoo hashtable[32] and a
hand-written atomic-based Bloom filter. It supports two network
backends, LCI and GASNet-EX, primarily leveraging their active
message primitives. The LCI backend shares many similarities with
the one described in Section 3.2. Compared to the single-threaded
implementation, multithreading reduces the number of aggregation
targets by a factor of N, where N is the thread number per process.
All threads can serve the incoming RPCs, resulting in improved
load balance.

We run the k-mer counting mini-app with the human chr14
dataset (7.75GB). It contains 37 million reads and 1.8 billion k-mers
(with the k-mer length k = 51). We run the multithreaded im-
plementation with 2 processes per node to avoid the inter-socket

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044

1045
1046
1047
1048

1049

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102

Conference’17, July 2017, Washington, DC, USA

overheads. The aggregation buffer size is set to be 8KB per desti-
nation. The total aggregation buffer size is always smaller than its
HipMer counterpart due to the reduced destination number. All
threads run the application logic and periodically progress the net-
work backend (the all-worker setup). This is the best setup for LCI
on both platforms. However, when running GASNet-EX on Delta,
the all-worker setup results in devastating performance (over 20x
worse than LCI). Therefore, we add an additional dedicated progress
setup for GASNet-EX: use 63 threads for application logic and one
thread for network progress. We report the better of the two se-
tups for GASNet-EX (all-worker setup on Expanse and dedicated
progress setup on Delta).

Fig.6 shows the strong scaling results of the mini-app on Ex-
panse and Delta from 1 node (2 processes/128 cores) to 32 nodes (64
processes/4096 cores). Our multithreaded implementation outper-
forms the single-threaded reference implementation by up to 60%
on Expanse (8 nodes) and 40% on Delta (4 nodes), at which point
the reference implementation suffers from severe load imbalance
problems across 512/1024 processes. In addition, the LCI backend
outperforms its GASNet-EX counterpart by 35% on Expanse (16
nodes) and 75% on Delta (4 nodes). Although not shown here, we
also tried larger aggregation buffer sizes (up to 64KB), which re-
sulted in slightly smaller gaps between GASNet-EX and LCI due to
less frequent communication but lower overall performance due to
worse load balance.

HipMer evaluation stops at 8/4 nodes because UPC++ takes too
long to bootstrap for larger process counts. Investigation shows it
was due to the slow PMI2 fence operation. Multithreaded GASNet-
EX on Delta beyond 4 nodes will run into deadlock. We are working
with the GASNet-EX team to investigate this issue.

5.4 HPX and Octo-Tiger

The increasingly complicated architectures and dynamic scientific
computing algorithms have attracted growing interest in the Asyn-
chronous Many-Task (AMT) programming model [5, 6, 9, 29, 31].
With AMTs, users express their application logic as a set of fine-
grained tasks and task dependencies. The runtime then schedules
these tasks on available resources according to task dependencies
and data locality. Compared to the traditional bulk-synchronous
parallel (BSP) model, AMTs can potentially achieve better load bal-
ance, portability, and communication overlapping, with lower user
programming complexity. However, previous works have shown
that existing communication libraries usually do not support AMTs’
communication needs most efficiently, as their communications are
heavily multithreaded and asynchronous [13, 49, 51].

[50] has integrated a previous C version of LCI into HPX [29], an
established AMT runtime that fully complies with the C++ Standard
APIs and extends them to the distributed case. In this work, we
upgrade the LCI support inside HPX to the latest C++ version and
evaluate its performance with an astrophysics application, Octo-
Tiger [35], which simulates the evolution of stellar systems based on
adaptive octo-trees and fast multipole methods. Octo-Tiger is built
on top of HPX for fully asynchronous execution and communication
overlapping. We use the "rotating star" scenarios and report the
timestamp per step.

10

Jiakun Yan and Marc Snir

== lei
mpi

—— mpix

L~ i
mpi
—/— mpix

i 10 1 10
Node Count Node Count

(b) Delta (with Slingshot-11)

=)
|

Time (s) per step

(a) Expanse (with InfiniBand)

Figure 7: Octo-Tiger strong scaling results comparing LCI,
standard MPI, and MPICH with the VCI extension (mpix).

Figure 7 shows the results. For mpix, we use the MPICH VCI
extension. Preliminary experiments have shown that MPICH with
VCI extensions performs better with the libfabric backend than the
UCX backend. Therefore, we use the MPICH libfabric backend here.
Results reported here use the optimal VCI number for mpix and
the optimal device number for Ici. We also use replicated request
pools for mpix to reduce thread contention on completion polling.
On Expanse, LCI outperforms mpi (standard MPI) by 30% and mpix
by 10%. On Delta, LCI outperforms mpi by 3x and mpix by 35%. In
addition, mpix needs 8 VCIs on both platforms to reach the optimal
performance, while Ici only needs 1 device on Expanse and 2 devices
on Delta. This shows that LCI has better intra-resource threading ef-
ficiency compared to MPICH, thanks to its thread-efficient runtime
design.

Related work. A previous version of LCI has been integrated
into PaRSEC and showed favorable performance over its MPI back-
end [36]. LCI has also been integrated into HPX releases and used
by other projects. [48] implements a 2D FFT mini-app with HPX
and reports that the LCI backend outperforms the MPI counter-
part and the reference FFTW implementation by 5x. [15] scales
Octo-Tiger to 1700+ GPU nodes (around 7000 GPUs/processes) on
Perlmutter and achieves 1.7x speedup compared to Cray MPICH at
full scale. We are unable to conduct similar scaling experiments in
this paper due to computation resource limitations, but we expect
the latest version of LCI to have similar scalability.

6 Conclusion and Future Work

We have presented LCI, a communication library designed for asyn-
chronous multithreaded programming models and applications.
LCI is designed to be flexible, easy to use, explicit, and efficient.
It has shown significant performance improvements over exist-
ing communication libraries such as MPICH and GASNet-EX in
micro-benchmarks and applications.

LCI is still under active development. There are several areas
for future improvements. We list some of the most important ones
below.

Collective Communication: The existing LCI API focuses on point-
to-point communication primitives, as they are more commonly
seen in asynchronous multithreaded applications and are also the
basic building blocks for collective communication. LCI offers a few

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

1160

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

1218

LCI: a Lightweight Communication Interface for Efficient Asynchronous Multithreaded Communication

basic collective communication primitives, including dissemination-
based barrier and tree-based broadcast/reduce. Users can also com-
bine LCI with other communication libraries, such as MPI or *CCL,
for better collective communication performance. Identifying the
right interface and efficient design of non-bulk-synchronous collec-
tive communication for asynchronous multithreaded applications
is an important future work.

GPU Communication: The existing LCI focuses on CPU-CPU
communication, as it is the most common use case in asynchronous
multithreaded applications. However, we recognize that GPU-direct
communication is becoming increasingly popular and important
for LCI’s future work. There are mature techniques for integrating
GPU-Direct RDMA into existing communication libraries, such as
MPI and GASNet-EX, so we do not expect it to be difficult for LCI.
GPU-initiated communication is a different issue, and we are still
looking for potential applications and use cases.

References

[1] Sameh Abdulah, Allison H. Baker, George Bosilca, Qinglei Cao, Stefano Castruc-
cio, Marc G. Genton, David E. Keyes, Zubair Khalid, Hatem Ltaief, Yan Song,
Georgiy L. Stenchikov, and Ying Sun. 2024. Boosting Earth System Model Out-
puts And Saving PetaBytes in Their Storage Using Exascale Climate Emulators.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis (Atlanta, GA, USA) (SC °24). IEEE Press, Article
2, 12 pages. doi:10.1109/SC41406.2024.00008

[2] Andrei Alexandrescu and Maged M. Michael. 2004. Lock-Free Data Structures

with Hazard Pointers. https://erdani.org/publications/cuj-2004-12.pdf

Abdelhalim Amer, Huiwei Lu, Pavan Balaji, Milind Chabbi, Yanjie Wei, Jeff

Hammond, and Satoshi Matsuoka. 2019-01-08. Lock Contention Management in

Multithreaded MPL. ACM Transactions on Parallel Computing 5, 3 (2019-01-08),

12:1-12:21. doi:10.1145/3275443

Abdelhalim Amer, Huiwei Lu, Yanjie Wei, Pavan Balaji, and Satoshi Matsuoka.

2015-01-24. MPI+Threads: Runtime Contention and Remedies. In Proceedings of

the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming (New York, NY, USA) (PPoPP 2015). Association for Computing Machinery,

239-248. doi:10.1145/2688500.2688522

Cédric Augonnet, Andrei Alexandrescu, Albert Sidelnik, and Michael Garland.

2024. CUDASTF: Bridging the Gap Between CUDA and Task Parallelism. In SC24:

International Conference for High Performance Computing, Networking, Storage

and Analysis. 1-17. doi:10.1109/SC41406.2024.00049

[6] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacre-
nier. 2009. StarPU: A Unified Platform for Task Scheduling on Heterogeneous
Multicore Architectures. In Euro-Par 2009 Parallel Processing (Berlin, Heidelberg)
(Lecture Notes in Computer Science), Henk Sips, Dick Epema, and Hai-Xiang Lin
(Eds.). Springer, 863-874. do0i:10.1007/978-3-642-03869-3_80

[7] John Bachan, Scott B. Baden, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil,
Dan Bonachea, Paul H. Hargrove, and Hadia Ahmed. 2019. UPC++: A High-
Performance Communication Framework for Asynchronous Computation. In
2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
963-973. doi:10.1109/IPDPS.2019.00104

[8] Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, and Rajeev Thakur.
2008. Toward Efficient Support for Multithreaded MPI Communication. In Recent
Advances in Parallel Virtual Machine and Message Passing Interface (Berlin, Hei-
delberg) (Lecture Notes in Computer Science), Alexey Lastovetsky, Tahar Kechadi,
and Jack Dongarra (Eds.). Springer, 120-129. doi:10.1007/978-3-540-87475-1_20

[9] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken. 2012-11. Legion:
Expressing Locality and Independence with Logical Regions. In SC’12: Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis. 1-11. doi:10.1109/SC.2012.71

[10] Dan Bonachea and Paul H. Hargrove. 2018. GASNet-EX: A High-Performance,

Portable Communication Library for Exascale. In Languages and Compilers for
Parallel Computing: 31st International Workshop (LCPC 2018). Springer, 138-158.
doi:10.1007/978-3-030-34627-0_11

[11] Dan Bonachea and Jaein Jeong. 2002. Gasnet: A portable high-performance com-

munication layer for global address-space languages. CS258 Parallel Computer

Architecture Project, Spring 31 (2002), 17.

George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas

Herault, and Jack J. Dongarra. 2013-11. PaRSEC: Exploiting Heterogeneity to

Enhance Scalability. Computing in Science & Engineering 15, 6 (2013-11), 36-45.

doi:10.1109/MCSE.2013.98

3

=

[4

=

(5

=

[12

11

(13]

[14

[16]

(17]

(18]

[19]

[20

[21]

[22

[23]

[24]

[25

[26]

[27

Conference’17, July 2017, Washington, DC, USA

Emilio Castillo, Nikhil Jain, Marc Casas, Miquel Moreto, Martin Schulz, Ramon
Beivide, Mateo Valero, and Abhinav Bhatele. 2019. Optimizing computation-
communication overlap in asynchronous task-based programs. In Proceedings of
the ACM International Conference on Supercomputing. 380-391.

Barbara Chapman, Tony Curtis, Swaroop Pophale, Stephen Poole, Jeff Kuehn,
Chuck Koelbel, and Lauren Smith. 2010. Introducing OpenSHMEM: SHMEM
for the PGAS Community. In Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model (New York, New York, USA) (PGAS ’10).
Association for Computing Machinery, New York, NY, USA, Article 2, 3 pages.
doi:10.1145/2020373.2020375

Gregor Daif3, Patrick Diehl, Jiakun Yan, John K Holmen, Rahulkumar Gayatri,
Christoph Junghans, Alexander Straub, Jeff R Hammond, Dominic Marcello,
Miwako Tsuji, et al. 2024. Asynchronous-Many-Task Systems: Challenges and
Opportunities-Scaling an AMR Astrophysics Code on Exascale machines using
Kokkos and HPX. arXiv preprint arXiv:2412.15518 (2024).

Hoang-Vu Dang, Marc Snir, and William Gropp. 2016. Towards millions of
communicating threads. In Proceedings of the 23rd European MPI Users’ Group
Meeting (Edinburgh, United Kingdom) (EuroMPI '16). Association for Computing
Machinery, New York, NY, USA, 1-14. doi:10.1145/2966884.2966914

E.D. Demaine, 1. Foster, C. Kesselman, and M. Snir. 2001. Generalized Commu-
nicators in the Message Passing Interface. IEEE Transactions on Parallel and
Distributed Systems 12, 6 (2001), 610-616. doi:10.1109/71.932714

James Dinan, Pavan Balaji, David Goodell, Douglas Miller, Marc Snir, and Rajeev
Thakur. 2013. Enabling MPI Interoperability through Flexible Communication
Endpoints. In Proceedings of the 20th European MPI Users’ Group Meeting (New
York, NY, USA) (EuroMPI ’13). Association for Computing Machinery, 13-18.
doi:10.1145/2488551.2488553

Géabor Dozsa, Sameer Kumar, Pavan Balaji, Darius Buntinas, David Goodell,
William Gropp, Joe Ratterman, and Rajeev Thakur. 2010. Enabling Concurrent
Multithreaded MPI Communication on Multicore Petascale Systems. In Recent
Advances in the Message Passing Interface (Berlin, Heidelberg) (Lecture Notes
in Computer Science), Rainer Keller, Edgar Gabriel, Michael Resch, and Jack
Dongarra (Eds.). Springer, 11-20. doi:10.1007/978-3-642-15646-5_2

Tarek El-Ghazawi and Lauren Smith. 2006. UPC: Unified Parallel C. In Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing (Tampa, Florida) (SC "06).
Association for Computing Machinery, New York, NY, USA, 27-es. doi:10.1145/
1188455.1188483

Guangnan Feng, Jiabin Xie, Dezun Dong, and Yutong Lu. 2024. UNR: Unified
Notifiable RMA Library for HPC. In SC24: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 1-15.
Evangelos Georganas, Aydin Bulug, Jarrod Chapman, Steven Hofmeyr, Chaitanya
Aluru, Rob Egan, Leonid Oliker, Daniel Rokhsar, and Katherine Yelick. 2015.
HipMer: an extreme-scale de novo genome assembler. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis (Austin, Texas) (SC ’15). Association for Computing Machinery,
New York, NY, USA, Article 14, 11 pages. doi:10.1145/2807591.2807664

Ryan Grant, Anthony Skjellum, and Purushotham V. Bangalore. 2015. Lightweight
Threading with MPI Using Persistent Communications Semantics. Technical Report.
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States). https://www.
osti.gov/servlets/purl/1328651

Ryan E. Grant, Matthew G. F. Dosanjh, Michael J. Levenhagen, Ron Brightwell,
and Anthony Skjellum. 2019. Finepoints: Partitioned Multithreaded MPI Com-
munication. In High Performance Computing, Michéle Weiland, Guido Juckeland,
Carsten Trinitis, and Ponnuswamy Sadayappan (Eds.). Vol. 11501. Springer In-
ternational Publishing, 330-350. doi:10.1007/978-3-030-20656-7-17

Steven Hofmeyr, Rob Egan, Evangelos Georganas, Alex C Copeland, Robert Riley,
Alicia Clum, Emiley Eloe-Fadrosh, Simon Roux, Eugene Goltsman, Aydin Bulug,
et al. 2020. Terabase-scale metagenome coassembly with MetaHipMer. Scientific
reports 10, 1 (2020), 10689.

HPCwire. 2024. Venado: The Al Supercomputer Built to Tackle Science’s
Biggest Challenges. https://www.hpcwire.com/2024/09/16/venado- the-ai-
supercomputer-built-to-tackle-sciences-biggest-challenges/

Khaled Z. Ibrahim and Katherine Yelick. 2014. On the Conditions for Efficient
Interoperability with Threads: An Experience with PGAS Languages Using Cray
Communication Domains. In Proceedings of the 28th ACM International Conference
on Supercomputing (Munich, Germany) (ICS ’14). Association for Computing
Machinery, New York, NY, USA, 23-32. doi:10.1145/2597652.2597657

Hartmut Kaiser et al. 2020. HPX - The C++ Standard Library for Parallelism and
Concurrency. Journal of Open Source Software 5, 53 (2020), 2352.

Hartmut Kaiser et al. 2023. STEIIAR-GROUP/hpx: HPX V1.9.0: The C++ Standard
Library for Parallelism and Concurrency. doi:10.5281/zenodo.598202
Laxmikant V Kalé, Milind Bhandarkar, Narain Jagathesan, Sanjeev Krishnan,
and Josh Yelon. 1996. Converse: An interoperable framework for parallel pro-
gramming. In Proceedings of International Conference on Parallel Processing. IEEE,
212-217.

Laxmikant V. Kale and Sanjeev Krishnan. 1993-10-01. CHARM++: A Portable
Concurrent Object Oriented System Based on C++. ACM SIGPLAN Notices 28,
10 (1993-10-01), 91-108. doi:10.1145/167962.165874

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276

https://doi.org/10.1109/SC41406.2024.00008
https://erdani.org/publications/cuj-2004-12.pdf
https://doi.org/10.1145/3275443
https://doi.org/10.1145/2688500.2688522
https://doi.org/10.1109/SC41406.2024.00049
https://doi.org/10.1007/978-3-642-03869-3_80
https://doi.org/10.1109/IPDPS.2019.00104
https://doi.org/10.1007/978-3-540-87475-1_20
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1007/978-3-030-34627-0_11
https://doi.org/10.1109/MCSE.2013.98
https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1145/2966884.2966914
https://doi.org/10.1109/71.932714
https://doi.org/10.1145/2488551.2488553
https://doi.org/10.1007/978-3-642-15646-5_2
https://doi.org/10.1145/1188455.1188483
https://doi.org/10.1145/1188455.1188483
https://doi.org/10.1145/2807591.2807664
https://www.osti.gov/servlets/purl/1328651
https://www.osti.gov/servlets/purl/1328651
https://doi.org/10.1007/978-3-030-20656-7-17
https://www.hpcwire.com/2024/09/16/venado-the-ai-supercomputer-built-to-tackle-sciences-biggest-challenges/
https://www.hpcwire.com/2024/09/16/venado-the-ai-supercomputer-built-to-tackle-sciences-biggest-challenges/
https://doi.org/10.1145/2597652.2597657
https://doi.org/10.5281/zenodo.598202
https://doi.org/10.1145/167962.165874

1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333

1334

Conference’17, July 2017, Washington, DC, USA

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[47]

[48]

[49]

[50]

[51]

Xiaozhou Li, David G. Andersen, Michael Kaminsky, and Michael J. Freedman.
2014. Algorithmic improvements for fast concurrent Cuckoo hashing. In Proceed-
ings of the Ninth European Conference on Computer Systems (Amsterdam, The
Netherlands) (EuroSys '14). Association for Computing Machinery, New York,
NY, USA, Article 27, 14 pages. doi:10.1145/2592798.2592820

LLNL. [n. d.]. Lawrence Livermore National Laboratory’s El Capitan verified as
world’s fastest supercomputer. https://www.lInl.gov/article/52061/lawrence-
livermore-national-laboratorys-el- capitan-verified-worlds-fastest-
supercomputer

Wenbin Lu, Tony Curtis, and Barbara Chapman. 2019. Enabling Low-Overhead
Communication in Multi-threaded OpenSHMEM Applications using Contexts. In
2019 IEEE/ACM Parallel Applications Workshop, Alternatives To MPI (PAW-ATM).
47-57. doi:10.1109/PAW- ATM49560.2019.00010

Dominic C Marcello, Sagiv Shiber, Orsola De Marco, Juhan Frank, Geoffrey C
Clayton, Patrick M Motl, Patrick Diehl, and Hartmut Kaiser. 2021. Octo-Tiger: a
new, 3D hydrodynamic code for stellar mergers that uses HPX parallelization.
Monthly Notices of the Royal Astronomical Society 504, 4 (2021), 5345-5382.
Omri Mor, George Bosilca, and Marc Snir. 2023. Improving the Scaling of an
Asynchronous Many-Task Runtime with a Lightweight Communication Engine.
In Proceedings of the 52nd International Conference on Parallel Processing (New
York, NY, USA) (ICPP ’23). Association for Computing Machinery, 153-162.
doi:10.1145/3605573.3605642

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan,
et al. 2018. Ray: A distributed framework for emerging {Al} applications. In
13th USENIX symposium on operating systems design and implementation (OSDI
18). 561-577.

Adam Morrison and Yehuda Afek. 2013. Fast concurrent queues for x86 proces-
sors. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming (Shenzhen, China) (PPoPP ’13). Association for Com-
puting Machinery, New York, NY, USA, 103-112. doi:10.1145/2442516.2442527
NVIDIA. 2019. Getting Started with CUDA Graphs. https://developer.nvidia.
com/blog/cuda-graphs/

NVIDIA. 2025. RDMA Aware Networks Programming User Manual.
//docs.nvidia.com/networking/display/rdmaawareprogrammingv17
OFI Working Group (OFIWG). 2024. Libfabric Programmer’s Manual.
Thananon Patinyasakdikul, David Eberius, George Bosilca, and Nathan Hjelm.
2019. Give MPI Threading a Fair Chance: A Study of Multithreaded MPI Designs.
In 2019 IEEE International Conference on Cluster Computing (CLUSTER). 1-11.
doi:10.1109/CLUSTER.2019.8891015

Joseph Schuchart, Philipp Samfass, Christoph Niethammer, José Gracia, and
George Bosilca. 2021-09-01. Callback-Based Completion Notification Using MPI
Continuations. Parallel Comput. 106 (2021-09-01), 102793. doi:10.1016/j.parco.
2021.102793

Pavel Shamis, Manjunath Gorentla Venkata, M. Graham Lopez, Matthew B.
Baker, Oscar Hernandez, Yossi Itigin, Mike Dubman, Gilad Shainer, Richard L.
Graham, Liran Liss, Yiftah Shahar, Sreeram Potluri, Davide Rossetti, Donald
Becker, Duncan Poole, Christopher Lamb, Sameer Kumar, Craig Stunkel, George
Bosilca, and Aurelien Bouteiller. 2015. UCX: An Open Source Framework for
HPC Network APIs and Beyond. In 2015 IEEE 23rd Annual Symposium on High-
Performance Interconnects. 40-43. doi:10.1109/HOTIL.2015.13

Marc Snir. 1998. MPI-the Complete Reference: the MPI core. Vol. 1. MIT press.
Srinivas Sridharan, James Dinan, and Dhiraj D. Kalamkar. 2014. Enabling Efficient
Multithreaded MPI Communication through a Library-Based Implementation
of MPI Endpoints. In SC’14: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 487-498. doi:10.1109/
SC.2014.45

Trevor Steil, Tahsin Reza, Benjamin Priest, and Roger Pearce. 2023. Embrac-
ing irregular parallelism in hpc with ygm. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
1-13.

Alexander Strack, Christopher Taylor, Patrick Diehl, and Dirk Pfliger. 2024.
Experiences Porting Shared and Distributed Applications to Asynchronous Tasks:
A Multidimensional FFT Case-Study. In Workshop on Asynchronous Many-Task
Systems and Applications. Springer, 111-122.

Philippe Swartvagher. 2022. On the Interactions between HPC Task-based Run-
time Systems and Communication Libraries. Ph. D. Dissertation. Université de
Bordeaux.

Jiakun Yan, Hartmut Kaiser, and Marc Snir. 2023. Design and Analysis of the
Network Software Stack of an Asynchronous Many-task System — The LCI
parcelport of HPX. In Proceedings of the SC "23 Workshops of The International
Conference on High Performance Computing, Network, Storage, and Analysis (Den-
ver, CO, USA) (SC-W °23). Association for Computing Machinery, New York, NY,
USA, 1151-1161. doi:10.1145/3624062.3624598

Jiakun Yan, Hartmut Kaiser, and Marc Snir. 2025. Understanding the Communi-
cation Needs of Asynchronous Many-Task Systems—A Case Study of HPX+ LCL
arXiv preprint arXiv:2503.12774 (2025).

https:

12

(52

[53

[54]

[56

[57]

Jiakun Yan and Marc Snir

Jiakun Yan and Marc Snir. 2025. Contemplating a Lightweight Communication
Interface for Asynchronous Many-Task Systems. arXiv preprint arXiv:2503.15400
(2025).

Rohit Zambre and Aparna Chandramowlishwaran. 2022. Lessons Learned on
MPI+threads Communication. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis (Dallas, Texas)
(SC °22). IEEE Press, 1-16.

Rohit Zambre, Aparna Chandramowlishwaran, and Pavan Balaji. 2018. Scalable
Communication Endpoints for MPI+Threads Applications. In 2018 IEEE 24th
International Conference on Parallel and Distributed Systems (ICPADS). IEEE,
803-812. https://ieeexplore.ieee.org/abstract/document/8645059

Rohit Zambre, Aparna Chandramowliswharan, and Pavan Balaji. 2020. How
I Learned to Stop Worrying about User-Visible Endpoints and Love MPL In
Proceedings of the 34th ACM International Conference on Supercomputing (New
York, NY, USA) (ICS "20). Association for Computing Machinery, 1-13. doi:10.
1145/3392717.3392773

Rohit Zambre, Damodar Sahasrabudhe, Hui Zhou, Martin Berzins, Aparna Chan-
dramowlishwaran, and Pavan Balaji. 2021. Logically Parallel Communication for
Fast MPI+Threads Applications. IEEE Transactions on Parallel and Distributed
Systems 32, 12 (2021), 3038-3052. doi:10.1109/TPDS.2021.3075157

Hui Zhou, Ken Raffenetti, Yanfei Guo, and Rajeev Thakur. 2022. MPIX Stream:
An Explicit Solution to Hybrid MPI+X Programming. In Proceedings of the 29th
European MPI Users’ Group Meeting (Chattanooga, TN, USA) (EuroMPI/USA °22).
Association for Computing Machinery, New York, NY, USA, 1-10. doi:10.1145/
3555819.3555820

Xingyu Zhu, Dan Huang, and Yutong Lu. 2023. Enhancing Distributed Graph
Matching Algorithm with MPI RMA based Active Messages. In 2023 9th Interna-
tional Conference on Computer and Communications (ICCC). IEEE, 1952-1961.

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

1392

https://doi.org/10.1145/2592798.2592820
https://www.llnl.gov/article/52061/lawrence-livermore-national-laboratorys-el-capitan-verified-worlds-fastest-supercomputer
https://www.llnl.gov/article/52061/lawrence-livermore-national-laboratorys-el-capitan-verified-worlds-fastest-supercomputer
https://www.llnl.gov/article/52061/lawrence-livermore-national-laboratorys-el-capitan-verified-worlds-fastest-supercomputer
https://doi.org/10.1109/PAW-ATM49560.2019.00010
https://doi.org/10.1145/3605573.3605642
https://doi.org/10.1145/2442516.2442527
https://developer.nvidia.com/blog/cuda-graphs/
https://developer.nvidia.com/blog/cuda-graphs/
https://docs.nvidia.com/networking/display/rdmaawareprogrammingv17
https://docs.nvidia.com/networking/display/rdmaawareprogrammingv17
https://doi.org/10.1109/CLUSTER.2019.8891015
https://doi.org/10.1016/j.parco.2021.102793
https://doi.org/10.1016/j.parco.2021.102793
https://doi.org/10.1109/HOTI.2015.13
https://doi.org/10.1109/SC.2014.45
https://doi.org/10.1109/SC.2014.45
https://doi.org/10.1145/3624062.3624598
https://ieeexplore.ieee.org/abstract/document/8645059
https://doi.org/10.1145/3392717.3392773
https://doi.org/10.1145/3392717.3392773
https://doi.org/10.1109/TPDS.2021.3075157
https://doi.org/10.1145/3555819.3555820
https://doi.org/10.1145/3555819.3555820

	Abstract
	1 Introduction
	2 Related Work
	2.1 Asynchronous Communication
	2.2 Multithreaded Communication

	3 LCI Interface
	3.1 Objectified Flexible Function
	3.2 Example: LCI for iRPCLib
	3.3 Other Details

	4 LCI Runtime
	4.1 LCI Resources
	4.2 Network Backend
	4.3 Communication Protocol
	4.4 Putting Everything Together
	4.5 Implementation Note

	5 Evaluation
	5.1 Experimental Setup
	5.2 Micro-benchmarks
	5.3 K-mer Counting
	5.4 HPX and Octo-Tiger

	6 Conclusion and Future Work
	References

