
Examining MPI and its Extensions for
Asynchronous Multithreaded Communication

Jiakun Yan1[0000−0002−6917−5525], Marc Snir1[0000−0002−3504−2468], and Yanfei
Guo2[0000−0002−3731−5423]

1 University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
{jiakuny3,snir}@illinois.edu

2 Argonne National Laboratory, Lemont, IL 60439, USA
yguo@anl.gov

Abstract. The increasing complexity of HPC architectures and the
growing adoption of irregular scientific algorithms demand efficient sup-
port for asynchronous, multithreaded communication. This is most pro-
nounced with Asynchronous Many-Task (AMT) systems. Such commu-
nication was not a consideration during the initial MPI design. The MPI
community has recently introduced several extensions to address these
new requirements. This work evaluates two such extensions, the Virtual
Communication Interface (VCI) and the Continuation extensions, in the
context of an established AMT runtime, HPX. We begin by using an
MPI-level microbenchmark, modeled from HPX’s low-level communica-
tion mechanism, to measure the peak performance potential of these
extensions. We then integrate them into HPX to evaluate their effective-
ness in real-world scenarios. Our results show that while these extensions
can enhance performance compared to standard MPI, areas for improve-
ment remain. The current continuation proposal limits the maximum
multithreaded message rate achievable in the multi-VCI setting. Fur-
thermore, the recommended one-VCI-per-thread mode proves ineffective
in real-world scenarios due to the attentiveness problem. These findings
underscore the importance of improving intra-VCI threading efficiency
to achieve scalable multithreaded communication and fully realize the
benefits of recent MPI extensions.

Keywords: Multithreaded communication · Asynchronous communication · Task
parallelism · VCI · continuation.

1 Introduction

High-performance computing (HPC) architectures are becoming increasingly
heterogeneous with extensive on-node parallelism and deep memory hierarchies.
Modern compute nodes often feature over 100 CPU cores and multiple acceler-
ators. Meanwhile, scientific applications are adopting more adaptive or sparse
algorithms [20, 26] to achieve higher resolution and scalability. These trends chal-
lenge the traditional Bulk-Synchronous Parallel (BSP) model, in which all pro-
cesses operate in lockstep with evenly distributed workloads.



2 J. Yan et al.

Asynchronous Many-Task (AMT) systems have emerged as a compelling
alternative. In these systems, applications are expressed as task dependency
graphs, and the runtime manages task scheduling, dependencies, and commu-
nication, usually operating with one multithreaded process per socket or node.
AMT runtimes employ oversubscription, asynchronous execution, and communi-
cation-computation overlap to outperform hand-tuned BSP implementations in
irregular workloads [1, 40, 14].

AMTs exhibit different communication characteristics from BSP applica-
tions [28, 42]. Messages are typically finer-grained and dominated by point-to-
point communication rather than global collectives. Communication patterns
are highly dynamic, with many outstanding operations, and most threads (logi-
cally or physically) can generate or consume messages. These characteristics fall
outside the traditional design and optimization focus of MPI.

This paper investigates how well existing MPI and recent extensions can
support AMT’s communication requirements through a case study of an estab-
lished AMT runtime, HPX. While our focus is on AMTs, their communication
challenges are increasingly common in applications with data-dependent execu-
tion, beyond the traditional BSP domain. To remain broadly relevant, MPI must
evolve to meet these demands.

Building on the analysis of communication requirements of AMT presented
in [42], we focus on two critical features shown to impact application-level per-
formance significantly: (1) scalable handling of many concurrent communication
operations, and (2) effective replication of communication resources to reduce
contention. We first use an MPI-level microbenchmark, modeled from HPX’s
low-level communication mechanism, to evaluate the raw capabilities and lim-
itations of the tested extensions, and then integrate them into HPX to assess
their practicality and system-level effectiveness.

Specifically, our evaluation is based on MPICH [31] and primarily involves
two MPI extensions:

– The Virtual Communication Interface (VCI) Extension [44]: a mechanism to
mitigate thread contention by replicating internal communication resources
and mapping them to distinct communicators.

– The Continuations Extension [37]: a callback-based completion mechanism
designed to reduce the overhead of managing large numbers of pending op-
erations.

Our results reveal both these extensions’ advantages and current limitations and
motivate recommendations for evolving MPI standards and implementations to
better support asynchronous multithreaded runtimes.

The rest of the paper is organized as follows. Section 2 provides background
on the MPI threading model and the extensions we study. Section 3 describes how
we integrate the VCI and continuation extensions into the HPX parcelport logic,
including our modifications to the existing extensions. Section 4 presents our
MPI-level microbenchmark and the fundamental performance characteristics of
the extensions. Section 5 then evaluates the extensions in the context of the HPX
runtime, using both microbenchmarks and a real-world astrophysics application,



Examining MPI for Asynchronous Multithreaded Communication 3

OctoTiger [14]. Section 6 presents related work. Finally, Section 7 concludes the
paper and discusses suggestions for improving MPI support for AMT systems.

2 Background

2.1 MPI Threading Level

The MPI specification [30] defines four levels of thread support, in increasing
order: MPI_THREAD_SINGLE, MPI_THREAD_FUNNELED, MPI_THREAD_SERIALIZED,
and MPI_THREAD_MULTIPLE. MPI_THREAD_MULTIPLE offers the highest level of
thread support, allowing multiple threads to invoke MPI functions simulta-
neously. This model is the most intuitive approach for writing multithreaded
MPI programs and is preferred by many users [7]. Most AMT systems such
as HPX [23], Legion [6], and Charm++ [24] rely on MPI_THREAD_MULTIPLE.
However, efficient support for this thread level has historically been lacking in
many MPI implementations [35], primarily due to contention on internal MPI
data structures and underlying network resources. This work focuses on optimiz-
ing and evaluating MPI extensions, specifically in the context of MPI_THREAD_
MULTIPLE.

2.2 MPICH VCI

The Virtual Communication Interface (VCI) extension [44] is a mature mecha-
nism in MPICH for addressing the MPI multithreaded efficiency issue through
resource replication. When enabled, the MPICH runtime will associate a distinct
set of communication resources (VCIs) with every MPI communicator, allowing
each thread to communicate on dedicated resources with minimal contention. It
also has advanced options for mapping communications to different VCI using
message tags. MPICH recommends that multithreaded applications allocate a
separate VCI/communicator for each thread. However, as we will demonstrate
in this paper, this setup does not always yield optimal performance in real-world
scenarios.

The design and implementation of VCI have been covered in detail in [44, 46].
As a brief overview, a VCI represents a relatively independent set of communi-
cation resources needed on the critical path of MPI communication routines. It
primarily includes a UCP worker (when using the UCX [38] backend) or an OFI
domain (when using the OFI [33] backend), which further encapsulates resources
related to network hardware interfacing, memory registration, tag matching, and
progressing. MPICH employs a per-VCI spinlock to ensure thread safety, allow-
ing concurrent operations across VCIs but serializing accesses within each VCI.

2.3 MPI Continuations Proposal

The MPI Continuations Proposal [36] aims to provide an efficient mechanism
for managing multiple pending communication operations. In standard MPI,



4 J. Yan et al.

the only way to track pending operations is to wait for or test the request ob-
ject corresponding to each communication operation. However, in event-driven
systems such as AMTs, threads may post many communication operations con-
currently, and the runtime must react when any individual operation completes.
MPI_Testsome is unsuitable for this use case as it is typically implemented as
a loop over the input request array, and maintaining the request array is in-
convenient and expensive. Instead, such systems typically maintain lists of MPI
requests (i.e., request pools) and use MPI_Test to opportunistically probe re-
quests in the pool until one or more completed ones are found. A thread polls
the pool when it becomes idle [13, 27, 41].

To avoid the polling overhead and the thread synchronization required to
manage shared request pools, the continuation proposal introduces an API that
allows MPI clients to attach callback functions to individual requests and reg-
ister them with a continuation request. The application then polls only this
continuation request to drive progress, and callbacks are invoked automatically
when corresponding communication operations complete. [37] implements this
proposal on a test branch of OpenMPI and integrates it into PaRSEC, operating
in a mode where a single communication thread handles all MPI calls.

In this work, we implement the continuation proposal in MPICH and evalu-
ate it in the context of HPX, where all worker threads can produce and consume
messages concurrently. This context provides a more realistic test case for mul-
tithreaded communication. We further investigate how well the continuation
mechanism integrates with multi-VCI configurations and assess its effectiveness
in managing completion overhead in these scenarios.

3 Extend HPX parcelport with MPI Extensions

In this section, we will describe the design of HPX’s low-level communication
layer, known as parcelport, and detail how we integrate the two MPI extensions
into the parcelport implementation. We also discuss the modifications made to
the continuation extension to better support multi-VCI scenarios.

3.1 Background

We first briefly describe the HPX communication stack and the original MPI
parcelport implementation. Please refer to [42] for a more detailed description.

HPX Application Interface HPX provides a rich set of APIs for developing
parallel and distributed applications. At the core of its distributed programming
model is a Remote Procedure Call (RPC) mechanism. Users can register func-
tions or class methods as Actions, and allocate globally accessible objects. Any
HPX process can then invoke these actions remotely, either on another process
or on a global object.



Examining MPI for Asynchronous Multithreaded Communication 5

HPX Communication Stack Overview Currently, HPX has three fully func-
tioning communication backends: TCP, MPI, and LCI [41]. HPX’s communica-
tion stack is organized into two layers. The upper layer is shared by all backends
and handles essential services such as action argument (de)serialization, global
object address resolution, message aggregation, and termination detection. Be-
low it, the parcelport layer is backend-specific and implements the actual data
transfer protocol.

In HPX, messages are transmitted in the form of parcels, each representing
one or multiple remote action invocations and (logically) consisting of one non-
zero-copy (NZC) chunk and an optional set of zero-copy (ZC) chunks. The NZC
chunk contains control metadata, while the ZC chunks hold bulk data. This
design avoids expensive memory copying by separating metadata from large
payloads. Since ZC chunks must be deserialized into memory layouts compatible
with C++ data structures, the upper layer pre-allocates appropriate receive
buffers before the parcel is fully received.

Each parcelport must implement two core functions: (1) a non-blocking
send_parcel function to send parcels and invoke a callback when complete, and
(2) a background_work function that checks for incoming parcels and progresses
outstanding communication. The background_work function is frequently in-
voked by idle threads and notifies the scheduler whether communication made
forward progress. It passes the received parcels to the upper layer by enqueuing
or immediately executing the encapsulated tasks.

Baseline MPI Implementation The original MPI parcelport transfers an
HPX parcel using a sequence of MPI messages, consisting of a header followed
by one or more data messages. The header contains metadata, such as NZC
size, number of ZC chunks, and the MPI tag used for the follow-ups, and may
piggyback the NZC chunk if it is small enough. Each remaining chunk is sent in
a separate message.

All communications are non-blocking. Header and data messages use MPI_Isend,
with a common tag for header messages and a distinct tag for each parcel. A
single MPI_Irecv (pre-posted with MPI_ANY_SOURCE and the header tag) lis-
tens for incoming headers. Upon receiving one, the receiver posts additional
MPI_Irecv‘s for the corresponding data messages, using buffer allocations from
the upper layer as needed.

To simplify synchronization, each parcel has at most one active MPI_Isend or
MPI_Irecv at a time; the following message is posted only after the current one
completes. Messages from different parcels may proceed concurrently. The MPI
request handles for pending sends and receives (except the preposted receive)
are stored in two STL deques (request pools). The background_work function is
responsible for polling the preposted receive request and the request pools using
MPI_Test. The request pools are polled in a round-robin fashion.

Because any HPX worker may call send_parcel and background_work, the
parcelport must be thread-safe. MPI is initialized with MPI_THREAD_MULTIPLE,
and all polling operations are guarded by an HPX lock. The parcelport will



6 J. Yan et al.

use non-blocking try-lock whenever possible. In the case of blocking waiting,
the HPX lock will deschedule the underlying user-level threads to avoid wasting
CPU cycles.

3.2 Replication of Communicators

The baseline implementation uses a single communicator. In MPICH, this maps
to a single set of internal communication resources and is protected by a single
spinlock. This causes severe thread contention for the lock if multiple threads
access it simultaneously to post sends/receives or test corresponding requests.
The VCI extension in MPICH enables us to replicate internal communication
resources by mapping them to distinct communicators. We thus enhance the
baseline MPI parcelport with the ability to split communication traffic into a
configurable number of communicators. We will call this enhanced parcelport
the MPIx parcelport.

We must ensure the send and receive operations for the same MPI mes-
sage are posted with the same communicator. Therefore, we construct a static
mapping from HPX worker threads to MPI communicators during parcelport
initialization. We assign HPX worker threads to communicators in an order that
ensures most adjacent threads are assigned the same communicator, thereby im-
proving locality. When the upper layer invokes the send_parcel function of the
parcelport layer on a worker thread, the following MPI send and receive calls for
that parcel will use the communicator associated with this thread. The header
message carries the index of this communicator.

With multiple VCIs, the MPIx parcelport will pre-post one MPI_Irecv for
incoming header messages for each communicator. Worker threads will poll for
completed communications using background_work only for their communica-
tor. When the continuation extension is not used, the request pools are replicated
per communicator, and the background_work function will poll the request pools
associated with their communicator.

The current MPICH implementation employs a hybrid progress model in the
case of multiple VCIs: a progress call (happening implicitly inside MPI_Test and
all blocking MPI functions) will primarily progress the VCI that is associated
with the calling operation, but it will also progress all VCIs once in a while
(every 255 VCI-local progress calls). This provides stronger progress guaran-
tees [45], but also increases contention between threads. As a result, we set the
MPIR_CVAR_CH4_GLOBAL_PROGRESS to false to turn off the occasional global
progress. Section 4.3 analyzes the performance impact of this setting.

3.3 Replacing Request Polling with Callbacks

The Continuations Proposal allows clients to attach a callback function to an
operation request. In the MPIx parcelport, after we post a MPI_Isend for a
header or follow-up message or a MPI_Irecv for a follow-up message, we attach
a callback function to the resulting request. The callback function will push a
completion descriptor to a preallocated completion queue. Essentially, we use the



Examining MPI for Asynchronous Multithreaded Communication 7

continuation callback to implement a queue-based completion mechanism. The
background_work function will poll the completion queue for any completed op-
eration and react accordingly. We share the completion queue among all threads
to improve load balancing. The completion queue uses a state-of-the-art atomic
queue implementation (LCRQ [29]).

We do not directly invoke the HPX completion logic in the callback because
HPX can invoke arbitrary user tasks and even destroy the current user-level
thread, which can lead to reduced performance and even deadlocks. The queue-
based design decouples the upper-level complexity from the low-level communi-
cation logic.

One side effect of sharing the queue across threads is potential contention
during follow-up MPI_Isend and MPI_Irecv operations, as these may be issued
by threads not originally associated with the relevant communicator. However,
such contention only occurs for large parcels, which are assumed to be relatively
infrequent and less contention-sensitive. Prior experiments have shown that the
benefits of using a shared queue typically outweigh this overhead.

Complication with Continuation Requests: While the core mechanism of
the Continuations Proposal is to attach callback functions to individual MPI
operation requests, it is not the entire proposal. To ensure progress and allow
more controls over callback execution, the proposal also introduces a persis-
tent continuation request object. All continuations (requests with attached call-
backs) must be registered with a continuation request. The continuation request
is marked complete when all the registered continuations have executed; the con-
tinuation request can be tested for completion, and has to be explicitly restarted
with MPI_Start before newly attached continuations can be executed again. In
MPICH, an atomic counter per continuation request tracks the total number of
pending requests to determine whether the continuation request is complete.

The continuation proposal expects users to test the continuation requests to
drive the MPI progress engine. In a multi-VCI setup, when a continuation request
is tested, the MPI runtime must determine which VCI(s) to make progress on.
MPICH adopts the following strategy for selecting the VCI(s) to make progress:
Each continuation request maintains a per-VCI atomic counter to track the num-
ber of pending operations on that VCI; when testing the continuation request,
the MPICH implementation will only make progress on VCI(s) with active as-
sociated operations (along with occasional global progress).

In many scenarios, the continuation request functionality adds unnecessary
overhead: progress can be guaranteed using other MPI calls, and each commu-
nication completion already invokes a client-defined callback. From the client’s
perspective, there is no need to test for the completion of multiple handler in-
vocations explicitly. Therefore, we extend the existing continuation proposal
with the option to disable the usage of the continuation request, by setting
the cont_request argument to MPI_REQUEST_NULL in the MPIX_Continue func-
tion. In this case, we can avoid the overhead of atomically counting the pending
callbacks and completing/restarting the continuation request. We evaluate the
performance implications of this optimization in Section 4.4.



8 J. Yan et al.

In HPX, we adopt this optimization and skip the allocation of continuation
requests entirely. HPX worker threads periodically poll their pre-posted receives,
which automatically invokes the progress engine for the corresponding VCI. It is
a lovely coincidence that HPX does not need to do anything additional to ensure
the progress of all pending communications attached to continuation callbacks.
For other clients where this is not the case, the MPICH runtime provides a
non-standard function MPIX_Stream_progress to invoke the progress engine of
a specific VCI explicitly.

4 MPI-level Microbenchmark

We begin with a multithreaded active message ping-pong microbenchmark to
evaluate the basic performance characteristics of the mechanisms used in the
MPIx parcelport, independent of the HPX runtime. To do so, we isolate the
active message layer from the MPIx parcelport implementation in HPX and use
it to construct a standalone microbenchmark. The active message layer uses
pre-posted receives for incoming messages and manages the pending sends with
request pools, with the option to leverage the VCI and continuation requests.
The benchmark runs on two nodes, each hosting a single MPI process with a
configurable number of threads. Threads are pinned to individual cores, and each
thread performs a fixed number of ping-pong iterations with a corresponding peer
thread on the remote node. All communications use the active message services
provided by the extracted layer.

The isolated active message layer organizes the relevant MPI resources (in-
cluding a communicator, a preposted receive request, and a request pool) into
a logical unit called a device. All threads share a single device in the baseline
(standard MPI) configuration. With the VCI extension enabled, each thread
is assigned a private device, mapped to a distinct VCI. With the continuation
extension, request pools are replaced with callbacks.

4.1 Experiment Setup

We run all the experiments in this section and Section 5 on SDSC Expanse
and NCSA Delta. Table 1 summarizes the platforms’ configurations. The two
platforms have similar CPUs but have different network hardware and software
stacks. Expanse uses HDR InfiniBand with Mellanox ConnectX-6 NICs, while
Delta uses HPE Slingshot-11 with HPE Cassini NICs. On InfiniBand, MPICH
can use either UCX [38] or OFI [33] as the network backend, while on Slingshot-
11, MPICH can only use OFI. We use a customized version of MPICH 4.3.0
that implements the continuation proposal. This version is currently available in
a pull request on the MPICH GitHub repository3.

3 https://github.com/pmodels/mpich/pull/7164



Examining MPI for Asynchronous Multithreaded Communication 9

Table 1: Platform Configuration.

Platform SDSC Expanse NCSA Delta

CPU AMD EPYC 7742 AMD EPYC 7763
sockets/node 2 2
cores/socket 64 64
NIC Mellanox ConnectX-6 HPE Cassini
Network HDR InfiniBand Slingshot-11

(2x50Gbps) (200Gbps)
Software MPICH 4.3.0 MPICH 4.3.0

UCX 1.17.0 Cray MPICH 8.1.27
Libfabric 1.21.0 Libfabric 1.15.2.0
OpenMPI 4.1.3 SSHOT2.1.3
Libibverbs 43.0

4.2 Overall Performance with Multiple VCIs

We begin by evaluating the performance impact of using multiple VCIs with
different MPICH network backends and compare the results to those of system-
installed MPI implementations (OpenMPI and Cray-MPICH) and standard MPICH
without VCI extensions.

As shown in Fig. 1, the MPICH VCI extension improves the multithreaded
performance of MPI, outperforming both the system-installed MPI (OpenMPI
and Cray-MPICH) and standard MPICH itself. When comparing the best-performing
multi-VCI configurations against the best standard MPI configurations using 32
threads per process, we observe speedups of 10x on Expanse and 8x on Delta.
Reduced thread contention through replicated communication resources is the
primary cause of the speedup. However, the performance gain depends on the
underlying network backend, revealing a trade-off between UCX and OFI. While
UCX has better base performance, it scales poorly when the number of thread-
s/VCIs exceeds 16. On Expanse with 64 threads (and 64 VCIs), MPICH with
the OFI backend outperforms the UCX backend by 4×.

In the standard MPI configuration shown in Fig. 1, all threads share a sin-
gle device (i.e. a communicator, a preposted receive, and a request pool). For
comparison, we also evaluated a variant where each thread has its own device,
still using standard MPI. However, it results in even lower performance than the
shared device case. With multiple outstanding pre-posted receive requests, there
is more contention for the blocking lock of the VCI.

We have also compared the continuation extension’s performance against
plain request polling. However, we found no performance difference between
the two approaches in either the multi-VCI or the standard MPI cases. This is
expected, as in this ping-pong microbenchmark, each thread has only one send
request and one receive request to poll simultaneously.



10 J. Yan et al.

(a) Experiment Results on Expanse with 1-64 threads per process.

(b) Experiment Results on Delta.

Fig. 1: Performance impacts of the VCI extension compared to other MPI vari-
ants with 1-64 threads per process.



Examining MPI for Asynchronous Multithreaded Communication 11

In addition to the VCI and the continuation extensions, the mpix results
shown in Fig. 1 were measured with two special options: (1) the global progress
was disabled with MPIR_CVAR_CH4_GLOBAL_PROGRESS set to 0, and (2) we dis-
abled the usage of the continuation request by passing MPI_REQUEST_NULL as
the cont_request argument to the MPIX_Continue function. We discuss these
two additions and their performance impact in the next two sections.

4.3 Global Progress with Multiple VCIs

(a) Expanse. (b) Delta.

Fig. 2: Performance impacts of the global progress requirement with 1-64 threads
per process.

As discussed in Section 3.2, MPICH employs an occasional global progress
strategy by default for stronger MPI progress semantics, at the cost of increased
thread contention across VCIs. Figure 2 shows the performance impact. We eval-
uate two variants (configured by the MPIR_CVAR_CH4_GLOBAL_PROGRESS control
variable): one with occasional global progress enabled (the default option) and
the other with it disabled (the option used by HPX). We observe that perfor-
mance significantly improves when we disable the global progress option, even
though it only performs one global progress every 255 per-VCI progress tests.
The message rate improves by 4.5x on Expanse and 40% on Delta.

4.4 Continuation with Multiple Threads

As discussed in Section 3.3, the continuation request gives users more control over
the progress and completion of pending MPI operations but also adds overhead.
Figure 3 shows its performance impact. We evaluate two variants with/without
the continuation requests. The variant with the continuation request allocates
one continuation request per VCI, so there will be no contention on the VCI
progress engines. The performance is improved when we disable the continuation
request (by passing MPI_REQUEST_NULL as the cont_request argument to the



12 J. Yan et al.

(a) Expanse. (b) Delta.

Fig. 3: Performance impacts of the continuation request with 1-64 threads per
process.

MPIX_Continue function). With 64 threads, the performance improves by 64%
on Expanse and 27% on Delta. This indicates that the atomic operations and
the logic for completing and restarting continuation requests cause a noticeable
overhead.

4.5 Summary

The VCI extension greatly improves the maximum message rate achievable in
multithreaded scenarios. However, the two existing network backends in MPICH
(UCX and OFI) have limitations. The global progress requirement of the MPI
specification and the continuation request construct of the existing continuation
proposal can also hurt the performance.

5 HPX Evaluation

In this section, we evaluate the performance impacts of the VCI and continuation
extensions on the MPIx parcelport. We do this using two major benchmarks:
an HPX microbenchmark, with a flood of messages between two nodes, which
tests the maximum throughput of message processing; and an astrophysics ap-
plication, OctoTiger [14], which tests the impact on a real-world application. [42]
describes in detail the HPX flooding microbenchmark.

For the HPX microbenchmark, we report the achieved message rate for two
payload sizes: 8 bytes and 16 kilobytes. With 8-byte payloads, the header message
can piggyback the application data, and every parcel uses one MPI message.
With 16-kilobyte payloads, every parcel uses two MPI messages: one header
message and one data message. For the OctoTiger benchmark, we show the
total execution time of the application with 20 iterations on 32 nodes. We run
two OctoTiger processes per node and 63 threads per process, reserving 1 CPU
core per socket for OS activities.



Examining MPI for Asynchronous Multithreaded Communication 13

We also include the performance number of the LCI parcelport [41] for com-
parison. LCI [43] is an experimental communication library specifically designed
for efficient asynchronous and multithreaded communication. Its interface and
runtime are designed with AMT in mind, enabling a more direct communication
path between the network and application layers. We include the LCI parcelport
as a reference point representing achievable performance when programming di-
rectly against the native network API, unconstrained by the MPI standard.

5.1 Overall Performance

We first compare the MPIx parcelport (mpix ) with the existing LCI parcelport
(lci) and the original MPI parcelport (mpi) in HPX.

Fig. 4 shows the experimental results with varying numbers of MPICH VCIs
or LCI devices. We show the results of the LCI parcelport (lci), the MPIx
parcelport with continuation (mpix ), the MPIx parcelport with request polling
(mpix_req), and the old MPI parcelport (mpi). We observe that mpix greatly
shrinks the performance gap between lci and mpi, especially on Expanse at
higher device counts. lci is expected to outperform MPI-based approaches as
it features a full redesign from the network layer up to suit AMT needs. The
performance of mpi is much worse than that of mpix, showing the performance
benefit of the VCI extensions.

Continuation-based programming simplifies development compared to man-
aging and polling request pools, offering clear programmability benefits. It also
yields a 5% performance improvement for OctoTiger on Expanse but shows no
measurable gains in other scenarios, contrary to our expectations. This suggests
that the overhead of request polling is less significant than anticipated.

A prior study of the LCI parcelport [42] observed that a lightweight polling
mechanism is indeed beneficial compared to the request polling mechanism,
seemingly contradicting the observation here. However, LCI has a more thread-
efficient runtime than MPICH, as LCI uses atomic-based data structures while
MPICH uses a per-VCI spinlock to ensure thread safety. As a result, the con-
tention due to lock-based request polling is relatively more significant with the
LCI parcelport; this effect is hidden in the mpix case as MPICH’s per-VCI spin-
lock is already coarse-grained. As a result, we believe the continuation extension
will be beneficial when the MPICH runtime gets rid of the coarse-grained per-
VCI spinlock and uses a more efficient lock-free data structure.

5.2 Investigate the Slowdown with Too Many VCIs

It is commonly believed that using one VCI per thread yields optimal multi-
threaded performance. However, our results show that using too many VCIs
can degrade performance in real-world applications. We have observed this in
the Octo-Tiger benchmark, where performance deteriorates with more than 16
VCIs. We also see a similar upward curve with the LCI parcelport. We further
investigated why too many MPICH VCIs or LCI devices worsen performance.
We identify the attentiveness problem as the main reason.



14 J. Yan et al.

(a) Message Rate (8B) achieved with the
flooding microbenchmark on Expanse.

(b) Message Rate (8B) achieved with the
flooding microbenchmark on Delta.

(c) Message Rate (16KiB) achieved with
the flooding microbenchmark on Expanse.

(d) Message Rate (16KiB) achieved with
the flooding microbenchmark on Delta.

(e) Octo-Tiger time per step with 32 nodes
on Expanse.

(f) Octo-Tiger time per step with 32 nodes
on Delta.

Fig. 4: Performance impacts of using multiple VCIs and continuation. lci uses
LCI. mpi uses the original MPI parcelport. mpix uses MPICH with the VCI and
continuation extensions.



Examining MPI for Asynchronous Multithreaded Communication 15

With too many VCIs, each VCI may not get enough attention from the
threads. For 63 threads and 63 VCIs, each VCI only gets one thread to poll it.
If the thread gets stuck executing a long-running task, it will not poll the corre-
sponding VCI, and pending communications on that VCI will not be processed,
even though other threads may be idle and waiting for work. With fewer VCIs,
more threads poll each VCI, and pending communications on that VCI will be
processed more quickly. On the other hand, there is more contention.

We implement a new progress strategy (random) in the MPIx parcelport
and the LCI parcelport to verify this hypothesis and explore a potential fix.
In the random strategy, each thread randomly picks a VCI to poll from all
available VCIs. This way, even if a thread gets stuck executing a long-running
task, other threads can still progress the pending communications on that VCI.
Correspondingly, we name the previous strategy as local, as each thread only
polls its own VCI.

(a) Expanse. (b) Delta.

Fig. 5: Performance impacts of the random progress strategies on OctoTiger
execution time with 63 threads per process and 1 VCI per thread.

Figure 5 shows the performance impact of the random progress strategy. We
notice that it greatly improves the performance of the LCI parcelport. However,
it does not improve the performance of the MPIx parcelport. Instead, it wors-
ens it on Expanse. This is due to the different threading efficiency of the two
communication runtimes. In MPICH, every progress call will block waiting for
the per-VCI spinlock, while in LCI, the progress call is non-blocking and always
employs a try-lock wrapper around the low-level network resources [43]. Profil-
ing confirms that MPICH gets stuck in the VCI spinlock more often with the
random strategy.



16 J. Yan et al.

5.3 Summary

The VCI extension shows great performance benefits across the HPX microbench-
mark and the real-world application. The continuation extension does not show
much performance benefits compared to per-VCI request polling with the cur-
rent MPICH implementation. The recommended usage of one VCI per thread
may not work with real-world applications where tasks both compute and com-
municate due to the attentiveness problem.

6 Related Work

Multiple efforts have sought to improve MPI performance in multithreaded en-
vironments. Prior work [5, 17, 3, 2, 34] has focused on reducing lock contention
and minimizing the scope of critical sections within the MPI runtime. Other
approaches [22, 25, 11, 21] leverage user-level threads, task systems, or process-
in-process techniques to enhance MPI on many-core processors and irregular
workloads. More recently, [45, 46] proposed using VCI to replicate low-level net-
work resources, thereby removing the need for runtime-level serialization. The
VCI mechanism has since become the recommended approach for improving
multithreaded performance in MPICH, representing a major milestone in MPI
implementation-level optimization. Similar optimizations have also been adopted
in OpenMPI [34].

A complementary line of research has focused on extending the MPI in-
terface to support multithreaded execution better. [16] proposed the endpoints
extension, which decouples threads from ranks and enables threads within a
process to issue non-contending MPI calls with different endpoints. More recent
MPIX Stream [47] and thread communicator [48] extensions revive and refine
the endpoint model. These interface-level extensions help users better convey
thread-level parallelism to the MPI runtime. Under the hood, the MPI runtime
still relies on VCIs for better multithreaded performance.

Beyond the MPI ecosystem, several other communication libraries have been
developed to support asynchronous and multithreaded communication. GASNet
and GASNet-EX [10, 9] provide low-level active messages and RMA operations
for library developers and compiler-generated codes. At a higher level, PGAS
models like UPC [18], UPC++ [4], and OpenSHMEM [12] expose global memory
abstractions with one-sided RMA operations. LCI [43] proposes new interface
and runtime designs to enhance multithreaded communication performance and
simplify asynchronous programming.

In contrast to these efforts, our work does not propose new MPI extensions or
communication libraries. Instead, we focus on evaluating the practical effective-
ness of existing mechanisms, specifically the VCI and continuation extensions,
and identifying their limitations. Our analysis complements prior work, offering
detailed insights into how current MPI features can be better utilized and where
future improvements are needed.



Examining MPI for Asynchronous Multithreaded Communication 17

7 Conclusion and Discussion

In this paper, we evaluated the effectiveness of the VCI and continuation ex-
tensions in MPICH using both MPI-level and HPX-level benchmarks. Our re-
sults show that the VCI extension can significantly improve the performance
of multithreaded applications. The continuation extension, while beneficial for
programmability, currently shows limited performance benefit.

Contrary to the common recommendation of assigning one VCI per thread,
we found that excessive use of VCIs can degrade performance in real-world ap-
plications. We identified the attentiveness problem as the primary cause: when
too many VCIs are in use, the MPI runtime may fail to poll them frequently
enough, leading to increased latency and missed progress opportunities. Our
findings highlight intra-VCI threading efficiency as a critical factor. Improving
it not only resolves the attentiveness issue by enabling more efficient polling
across threads, but also allows users to meet their multithreaded communica-
tion needs with fewer VCIs, which will also boost scalability by reducing resource
usage.

Improved intra-VCI efficiency also helps demonstrate the benefits of the
continuation extension. Continuations eliminate the need for explicit polling of
shared request pools, thus removing the associated thread contention. However,
if intra-VCI operations rely on coarse-grained locks, internal contention can ob-
scure these gains. With more efficient intra-VCI handling, continuations can
better realize their potential of minimizing overhead and avoiding contention.

While it is known to be challenging to design a threading-efficient VCI due
to the non-overtaking requirement and the need to support wildcard receives,
recent MPI info keys such as allow_overtaking and no_any_tag/source offer a
practical path forward. When these keys are set, MPI runtimes can safely adopt
more scalable designs. Task systems, some of the primary users of asynchronous
multithreaded communication, can often tolerate these relaxations [42]. However,
they still require support for any_source receives, which may necessitate addi-
tional info keys. One possible approach is to propagate any_source information
to the sender side, as suggested in prior work [15].

In addition, our evaluation has revealed limitations in two commonly used
communication middlewares: UCX and libfabric. Specifically, UCX shows per-
formance degradation when more than 16 UCP workers are used, and libfabric
delivers lower absolute performance. Prior work on LCI [43] has demonstrated
that multithreaded performance comparable to MPI-everywhere (one process per
core) is achievable when building directly on top of the libibverbs [32] layer. Ad-
dressing these performance constraints in the underlying middleware is essential
for MPI implementations to fully realize scalable multithreaded communication.

We believe these insights offer practical guidance for improving multithreaded
communication performance in MPICH and other MPI implementations, and we
hope they inform future runtime and interface design.

Acknowledgements. This work used Expanse at San Diego Supercomputer
Center [39] and Delta at National Center for Supercomputing Applications [19]



18 J. Yan et al.

through allocations CCR130058 and CIS250465 from the Advanced Cyberinfras-
tructure Coordination Ecosystem: Services & Support (ACCESS) program [8],
which is supported by U.S. National Science Foundation grants #2138259, #2138286,
#2138307, #2137603, and #2138296.

References

1. Abdulah, S., Baker, A. H., Bosilca, G., Cao, Q., Castruccio, S., Gen-
ton, M. G., Keyes, D. E., Khalid, Z., Ltaief, H., Song, Y., Stenchikov,
G. L., and Sun, Y. Boosting earth system model outputs and saving petabytes in
their storage using exascale climate emulators. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and Analysis
(2024), SC ’24, IEEE Press.

2. Amer, A., Lu, H., Balaji, P., Chabbi, M., Wei, Y., Hammond, J., and
Matsuoka, S. Lock contention management in multithreaded MPI. ACM Trans-
actions on Parallel Computing 5, 3 (2019-01-08), 12:1–12:21.

3. Amer, A., Lu, H., Wei, Y., Balaji, P., and Matsuoka, S. MPI+threads:
Runtime contention and remedies. In Proceedings of the 20th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (2015-01-24), PPoPP
2015, Association for Computing Machinery, pp. 239–248.

4. Bachan, J., Baden, S. B., Hofmeyr, S., Jacquelin, M., Kamil, A.,
Bonachea, D., Hargrove, P. H., and Ahmed, H. UPC++: A high-
performance communication framework for asynchronous computation. In 2019
IEEE International Parallel and Distributed Processing Symposium (IPDPS)
(2019), pp. 963–973.

5. Balaji, P., Buntinas, D., Goodell, D., Gropp, W., and Thakur, R. To-
ward efficient support for multithreaded MPI communication. In Recent Advances
in Parallel Virtual Machine and Message Passing Interface (2008), A. Lastovetsky,
T. Kechadi, and J. Dongarra, Eds., Lecture Notes in Computer Science, Springer,
pp. 120–129.

6. Bauer, M., Treichler, S., Slaughter, E., and Aiken, A. Legion: Express-
ing locality and independence with logical regions. In SC ’12: Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis (2012), pp. 1–11.

7. Bernholdt, D. E., Boehm, S., Bosilca, G., Gorentla Venkata, M.,
Grant, R. E., Naughton, T., Pritchard, H. P., Schulz, M., and Vallee,
G. R. A survey of MPI usage in the US exascale computing project. Concurrency
and Computation: Practice and Experience 32, 3 (2020), e4851. e4851 cpe.4851.

8. Boerner, T. J., Deems, S., Furlani, T. R., Knuth, S. L., and Towns,
J. Access: Advancing innovation: Nsf’s advanced cyberinfrastructure coordination
ecosystem: Services & support. In Practice and Experience in Advanced Research
Computing 2023: Computing for the Common Good. 2023, pp. 173–176.

9. Bonachea, D., and Hargrove, P. H. GASNet-EX: A high-performance,
portable communication library for Exascale. In Languages and Compilers for
Parallel Computing: 31st International Workshop (LCPC 2018) (2018), Springer,
pp. 138–158.

10. Bonachea, D., and Jeong, J. Gasnet: A portable high-performance communi-
cation layer for global address-space languages. CS258 Parallel Computer Archi-
tecture Project, Spring 31 (2002), 17.



Examining MPI for Asynchronous Multithreaded Communication 19

11. Carribault, P., Pérache, M., and Jourdren, H. Enabling low-overhead hy-
brid MPI/OpenMP parallelism with MPC. In International Workshop on OpenMP
(2010), Springer, pp. 1–14.

12. Chapman, B., Curtis, T., Pophale, S., Poole, S., Kuehn, J., Koelbel,
C., and Smith, L. Introducing OpenSHMEM: SHMEM for the PGAS com-
munity. In Proceedings of the Fourth Conference on Partitioned Global Address
Space Programming Model (New York, NY, USA, 2010), PGAS ’10, Association
for Computing Machinery.

13. Chatterjee, S., Tasırlar, S., Budimlic, Z., Cavé, V., Chabbi, M., Gross-
man, M., Sarkar, V., and Yan, Y. Integrating asynchronous task parallelism
with MPI. In 2013 IEEE 27th International Symposium on Parallel and Distributed
Processing (2013), IEEE, pp. 712–725.

14. Daiß, G., Diehl, P., Yan, J., Holmen, J. K., Gayatri, R., Junghans,
C., Straub, A., Hammond, J. R., Marcello, D., Tsuji, M., et al.
Asynchronous-many-task systems: Challenges and opportunities–scaling an amr
astrophysics code on exascale machines using kokkos and hpx. arXiv preprint
arXiv:2412.15518 (2024).

15. Dang, H.-V., Snir, M., and Gropp, W. Towards millions of communicat-
ing threads. In Proceedings of the 23rd European MPI Users’ Group Meeting
(New York, NY, USA, 2016), EuroMPI ’16, Association for Computing Machinery,
p. 1–14.

16. Dinan, J., Grant, R. E., Balaji, P., Goodell, D., Miller, D., Snir, M.,
and Thakur, R. Enabling communication concurrency through flexible mpi end-
points. The International Journal of High Performance Computing Applications
28, 4 (2014), 390–405.

17. Dózsa, G., Kumar, S., Balaji, P., Buntinas, D., Goodell, D., Gropp,
W., Ratterman, J., and Thakur, R. Enabling concurrent multithreaded MPI
communication on multicore petascale systems. In Recent Advances in the Message
Passing Interface (2010), R. Keller, E. Gabriel, M. Resch, and J. Dongarra, Eds.,
Lecture Notes in Computer Science, Springer, pp. 11–20.

18. El-Ghazawi, T., and Smith, L. UPC: Unified parallel C. In Proceedings of the
2006 ACM/IEEE Conference on Supercomputing (New York, NY, USA, 2006), SC
’06, Association for Computing Machinery, p. 27–es.

19. Gropp, W., Boerner, T., Bode, B., and Bauer, G. Delta: Balancing gpu
performance with advanced system interfaces.

20. Hofmeyr, S., Egan, R., Georganas, E., Copeland, A. C., Riley, R., Clum,
A., Eloe-Fadrosh, E., Roux, S., Goltsman, E., Buluç, A., et al. Terabase-
scale metagenome coassembly with metahipmer. Scientific reports 10, 1 (2020),
10689.

21. Hori, A., Si, M., Gerofi, B., Takagi, M., Dayal, J., Balaji, P., and
Ishikawa, Y. Process-in-process: techniques for practical address-space sharing.
In Proceedings of the 27th International Symposium on High-Performance Parallel
and Distributed Computing (New York, NY, USA, 2018), HPDC ’18, Association
for Computing Machinery, p. 131–143.

22. Huang, C., Lawlor, O., and Kale, L. V. Adaptive MPI. In International work-
shop on languages and compilers for parallel computing (2003), Springer, pp. 306–
322.

23. Kaiser, H., et al. HPX - The C++ standard library for parallelism and con-
currency. Journal of Open Source Software 5, 53 (2020), 2352.

24. Kale, L. V., and Krishnan, S. CHARM++: A portable concurrent object
oriented system based on C++. 91–108.



20 J. Yan et al.

25. Kamal, H., and Wagner, A. FG-MPI: Fine-grain MPI for multicore and clus-
ters. In 2010 IEEE International Symposium on Parallel and Distributed Process-
ing, Workshops and Phd Forum (IPDPSW) (2010), pp. 1–8.

26. Ltaief, H., Alomairy, R., Cao, Q., Ren, J., Slim, L., Kurth, T.,
Dorschner, B., Bougouffa, S., Abdelkhalak, R., and Keyes, D. E. To-
ward capturing genetic epistasis from multivariate genome-wide association studies
using mixed-precision kernel ridge regression. In SC24: International Conference
for High Performance Computing, Networking, Storage and Analysis (2024), pp. 1–
12.

27. Mei, C., Sun, Y., Zheng, G., Bohm, E. J., Kale, L. V., Phillips, J. C.,
and Harrison, C. Enabling and scaling biomolecular simulations of 100 million
atoms on petascale machines with a multicore-optimized message-driven runtime.
In SC ’11: Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (2011), pp. 1–11.

28. Mor, O., Bosilca, G., and Snir, M. Improving the scaling of an asynchronous
many-task runtime with a lightweight communication engine. In Proceedings of
the 52nd International Conference on Parallel Processing (2023), ICPP ’23, Asso-
ciation for Computing Machinery, pp. 153–162.

29. Morrison, A., and Afek, Y. Fast concurrent queues for x86 processors. In
Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (New York, NY, USA, 2013), PPoPP ’13, Association for
Computing Machinery, p. 103–112.

30. MPI Forum. MPI: a message passing interface standard, Nov. 2023.
31. MPICH Developers. MPICH: High-Performance Portable MPI.

https://www.mpich.org, n.d.
32. NVIDIA. Rdma aware networks programming user manual, 2025.
33. (OFIWG), O. W. G. Libfabric programmer’s manual, 2023.
34. Patinyasakdikul, T., Eberius, D., Bosilca, G., and Hjelm, N. Give MPI

threading a fair chance: A study of multithreaded MPI designs. In 2019 IEEE
International Conference on Cluster Computing (CLUSTER) (2019), pp. 1–11.

35. Patinyasakdikul, T., Luo, X., Eberius, D., and Bosilca, G. Multirate:
A flexible mpi benchmark for fast assessment of multithreaded communication
performance. In 2019 IEEE/ACM Workshop on Exascale MPI (ExaMPI) (2019),
pp. 1–11.

36. Schuchart, J. MPI continuations proposal, 2021.
37. Schuchart, J., Samfass, P., Niethammer, C., Gracia, J., and Bosilca, G.

Callback-based completion notification using MPI continuations. Parallel Com-
puting 106 (2021-09-01), 102793.

38. Shamis, P., Venkata, M. G., Lopez, M. G., Baker, M. B., Hernandez, O.,
Itigin, Y., Dubman, M., Shainer, G., Graham, R. L., Liss, L., Shahar, Y.,
Potluri, S., Rossetti, D., Becker, D., Poole, D., Lamb, C., Kumar, S.,
Stunkel, C., Bosilca, G., and Bouteiller, A. UCX: An open source frame-
work for HPC network APIs and beyond. In 2015 IEEE 23rd Annual Symposium
on High-Performance Interconnects (2015), pp. 40–43.

39. Strande, S., Cai, H., Tatineni, M., Pfeiffer, W., Irving, C., Majum-
dar, A., Mishin, D., Sinkovits, R., Norman, M., Wolter, N., Cooper,
T., Altintas, I., Kandes, M., Perez, I., Shantharam, M., Thomas, M.,
Sivagnanam, S., and Hutton, T. Expanse: Computing without boundaries:
Architecture, deployment, and early operations experiences of a supercomputer



Examining MPI for Asynchronous Multithreaded Communication 21

designed for the rapid evolution in science and engineering. In Practice and Ex-
perience in Advanced Research Computing 2021: Evolution Across All Dimensions
(New York, NY, USA, 2021), PEARC ’21, Association for Computing Machinery.

40. Yadav, R., Lee, W., Elibol, M., Papadakis, M., Lee-Patti, T., Garland,
M., Aiken, A., Kjolstad, F., and Bauer, M. Legate sparse: Distributed
sparse computing in python. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (New York, NY,
USA, 2023), SC ’23, Association for Computing Machinery.

41. Yan, J., Kaiser, H., and Snir, M. Design and analysis of the network software
stack of an asynchronous many-task system – the LCI parcelport of HPX. In
Proceedings of the SC ’23 Workshops of The International Conference on High
Performance Computing, Network, Storage, and Analysis (New York, NY, USA,
2023), SC-W ’23, Association for Computing Machinery, p. 1151–1161.

42. Yan, J., Kaiser, H., and Snir, M. Understanding the communication needs
of asynchronous many-task systems–a case study of HPX+LCI. arXiv preprint
arXiv:2503.12774 (2025).

43. Yan, J., and Snir, M. Lci: a lightweight communication interface for efficient
asynchronous multithreaded communication. arXiv preprint arXiv:2505.01864
(2025).

44. Zambre, R., Chandramowliswharan, A., and Balaji, P. How i learned to
stop worrying about user-visible endpoints and love MPI. In Proceedings of the
34th ACM International Conference on Supercomputing (New York, NY, USA,
2020), ICS ’20, Association for Computing Machinery.

45. Zambre, R., Chandramowliswharan, A., and Balaji, P. How I learned to
stop worrying about user-visible endpoints and love MPI. In Proceedings of the 34th
ACM International Conference on Supercomputing (2020), ICS ’20, Association for
Computing Machinery, pp. 1–13.

46. Zambre, R., Sahasrabudhe, D., Zhou, H., Berzins, M., Chandramowlish-
waran, A., and Balaji, P. Logically Parallel Communication for Fast
MPI+Threads Applications. 3038–3052.

47. Zhou, H., Raffenetti, K., Guo, Y., and Thakur, R. MPIX Stream: An ex-
plicit solution to hybrid MPI+X programming. In Proceedings of the 29th European
MPI Users’ Group Meeting (2022), pp. 1–10.

48. Zhou, H., Raffenetti, K., Zhang, J., Guo, Y., and Thakur, R. Frustrated
with MPI+Threads? try MPIxThreads! In Proceedings of the 30th European MPI
Users’ Group Meeting (2023), pp. 1–10.


