
Lightweight Communication Interface:
 High-Performance Communication Support for

Asynchronous Many-Task Systems

Jiakun Yan, Omri Mor, Marc Snir

Charm++ Workshop 2024

Bulk-Synchronous Programming (BSP)
All processes work in lock steps.

Traditionally

University of Illinois Urbana-Champaign Computer Science

Collective communication

Coarse-grained messages

No or a few pending operations

Single thread

Traditional Comm. Characteristics

University of Illinois Urbana-Champaign Computer Science

● Architectures are getting heterogeneous with more on-node parallelism
○ More CPU cores per node.
○ Couple of GPUs per node.
○ Uneven cores.

● Programming models are getting asynchronous, over-subscripted, dynamic.
○ Asynchronous Many-Task Systems!

● More and more irregular, dynamic applications.
○ Graph analytics.
○ Sparse algebra.
○ Adaptive algorithms.

Now

University of Illinois Urbana-Champaign Computer Science

Point-to-point communication

Fine-grained messages

Larger number of concurrent messages

Multiple threads

Collective communication

Coarse-grained messages

No or a few pending operations

Single thread

The optimization focus of traditional communication libraries is still mainly on the

left. This motivates the Lightweight Communication Interface (LCI) project.

Shifts in Comm. Characteristics

University of Illinois Urbana-Champaign Computer Science

● Designed with AMTs as the target clients.
○ Should also apply to other irregular applications such as graph analytics/sparse linear algebra.

● A research tool.
○ Help us understand how to structure communication libraries and design their interfaces to

better match AMTs’ needs.
● Focuses:

○ Point-to-point communication.
○ Fine-grained messages.
○ Many pending operations.
○ Multithreaded environment.

Lightweight Communication Interface (LCI)

University of Illinois Urbana-Champaign Computer Science

● C interface with C/C++ implementation.
● Network backends:

○ libibverbs (for Infiniband)
○ libfabric (for all others, e.g. Slingshot-11)
○ UCX (experimental)

● Existing clients and collaborators:
○ Gluon[1]: graph analytics (Keshav Pingali)
○ PaRSEC[2]: AMT (George Bosilca)
○ HPX[3]: AMT (Hartmut Kaiser)

[1] H. -V. Dang et al., "A Lightweight Communication Runtime for Distributed Graph Analytics," 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Vancouver, BC, Canada, 2018, pp. 980-989, doi: 10.1109/IPDPS.2018.00107.
[2] Mor, Omri, George Bosilca, and Marc Snir. "Improving the Scaling of an Asynchronous Many-Task Runtime with a Lightweight Communication
Engine." Proceedings of the 52nd International Conference on Parallel Processing. 2023.
[3] Yan, Jiakun, Hartmut Kaiser, and Marc Snir. "Design and Analysis of the Network Software Stack of an Asynchronous Many-task System--The LCI
parcelport of HPX." Proceedings of the SC'23 Workshops of The International Conference on High Performance Computing, Network, Storage, and
Analysis. 2023.

LCI: Current Status

University of Illinois Urbana-Champaign Computer Science

Computer Science

Interface

University of Illinois Urbana-Champaign

● Flexibility
○ Provide users with versatile communication primitives and synchronization mechanisms.

● Explicit control
○ Give users explicit control of communication resources and behaviors.

Essentially, give users versatile and orthogonal options to best suit their needs.

LCI Interface: Principles

University of Illinois Urbana-Champaign Computer Science

● For a point-to-point communication to happen, we need
○ source buffer & target buffer

● Two-sided Send/Receive:
○ Sender specifies the source buffer.
○ Receiver specifies the target buffer.

● One-sided Put:
○ Sender specifies both the source and target buffers.

● One-sided Get:
○ Receiver specifies both the source and target buffers.

● One-sided Put “allocate”:
○ Sender specifies the source buffer. LCI allocates the target buffers.

Communication Primitive

University of Illinois Urbana-Champaign Computer Science

● Depending on how much data to transfer.
○ Four protocols are available.

● Small message (e.g. <= 32B).
○ Inline protocol (eager protocol without memcpy).

● Medium (e.g. <= 8KB).
○ Buffer copy protocol (eager protocol with memcpy).

● Long (arbitrary size).
○ Rendezvous protocol.
○ No memory copy but additional handshakes.

● IO-VEC (one medium + multiple long).
○ Rendezvous protocol with merged handshakes.

All thresholds are visible and configurable. Users can explicitly choose which
communication protocol to use.

Communication Protocol

University of Illinois Urbana-Champaign Computer Science

● LCI offers four completion notification mechanisms:
○ Synchronizers
○ Completion queues
○ Callback functions
○ No completion

● More details: synchronizers.
○ Completion objects for individual operations similar to MPI requests, but

■ Can have multiple producers.
■ Completely thread-safe.

Completion Mechanism

University of Illinois Urbana-Champaign Computer Science

● (For eager messages) direct access to internal pre-registered buffers
(packets).

● (For rendezvous messages) direct access to memory registration.
● Explicit control over progress engine invocation.
● Explicit low-level resource representation (LCI device) and the ability to

replicate it.

Other options

University of Illinois Urbana-Champaign Computer Science

● Who provides the source/target buffers
○ Two-sided send/recv
○ One-sided put/get

● How much data to send
○ Short (inline), medium (eager), long (zero-copy)
○ iovec (one medium + multiple long)

● Completion mechanisms
○ Synchronizer
○ Completion queue
○ Active message handler
○ No signaling

● For eager message, whether the source/target buffers are user-provided or LCI-provided
○ Using LCI-provided buffers can potentially save one memory copy

● For long messages, whether the source/target buffers are registered.
● How to match the send and recv

○ tag only/rank+tag
● Explicit progress engine behavior control
● Explicit low-level resource (LCI devices) representation and replication

All options are orthogonal.

Users can choose any valid
combination.

Interface

University of Illinois Urbana-Champaign Computer Science

Computer Science

Design

University of Illinois Urbana-Champaign

● Focus on libibverbs as the native network interface.
○ To some extent, libfabric/UCX can be viewed as a slightly simpler/higher-level version

of it.
● Focus on the the eager protocol (medium messages).

○ The inline protocol (short messages) is very similar.
○ The rendezvous protocol (long messages) used in LCI is similar to those used in other

communication libraries.
● Focus on send/recv, put allocate primitives.

○ Regular put/get are simply RDMA operation wrappers.

Overview

University of Illinois Urbana-Champaign Computer Science

● Low-level resources
○ Queue pairs (send&recv queues)
○ Shared receive queues
○ completion queues

● Progress engine
○ Responsible for all background works

needed to support communications.
○ Implicit in MPI (MPI_Test…).
○ Explicit in LCI (LCI_progress).

Progress

Low-level
resources

qpqpqp

srq

cq

Two concepts

University of Illinois Urbana-Champaign Computer Science

Prepost receives

University of Illinois Urbana-Champaign Computer Science

● libibverbs does not like unexpected
messages.

○ Receive-Not-Ready errors are devastating
to application’s performance.

● Progress engine always makes sure
there are enough preposted receives.

○ So all messages are expected.
Progress

Low-level
resources

qpqpqp

Post low-level
recv

srq

cq

Low-level
resources

Post low-level
recv

qpqpqp

srq

cq

Packet Pool

Progress

Allocate

packet

Packet pool

University of Illinois Urbana-Champaign Computer Science

Libibverbs requires all communication buffers to be registered.
Packet pool: allocator of pre-registered fixed-sized buffers.

Low-level
resources

Post low-level
recv

qpqpqp

srq

cq

Packet Pool

Progress

Allocate

packet

Send messages

University of Illinois Urbana-Champaign Computer Science

Post low-level
sendSend packet

Memcpy

Low-level
resources

Post low-level
recv

qpqpqp

srq

cq

Packet Pool

Progress

Allocate

packet

Polling for incoming messages

University of Illinois Urbana-Champaign Computer Science

Post low-level
sendSend packet

Memcpy

Send done

Poll low-level CQ
Recv done

React accordingly

Low-level
resources

Post low-level
recv

qpqpqp

srq

cq

Packet Pool

Progress

Allocate

packet

LCI_putma: put medium allocate

University of Illinois Urbana-Champaign Computer Science

Post low-level
sendLCI_putma packet

Memcpy

Send done

Poll low-level CQ
Recv done

Completion object

● Users can directly assemble their message in a pre-allocated/reused packet.

Low-level
resources

Post low-level
recv

Post low-level
send qpqpqp

srq

cq

Packet Pool

Progress

LCI_putmnapacket

Allocate

packet

Completion
Object

Recv done

Send done

Poll low-level CQ

LCI_putmna: LCI put medium “no-copy” allocate

University of Illinois Urbana-Champaign Computer Science

Low-level
resources

Poll low-level CQ

Post low-level
recv

Post low-level
send qpqpqp

srq

cq

Packet Pool

Progress

LCI_sendm packet

Allocate

packet

Memcpy

Send done

Recv done

Matching TableLCI_recvm
Completion

Object

Insert
user

buffer

Memcpy

LCI_sendm/recvm: send/recv medium

University of Illinois Urbana-Champaign Computer Science

Low-level
resources

Poll low-level CQ

Post low-level
recv

Post low-level
send qpqpqp

srq

cq

Packet Pool

Progress

Allocate

packet

Send done

Recv done

Matching TableLCI_recvmn
Completion

Object

Insert

LCI_sendmnpacket

packet

LCI_sendmn/recvmn: send/recv medium “no-copy”

University of Illinois Urbana-Champaign Computer Science

● What to support:
○ Ordering
○ Wildcard tag (MPI_ANY_TAG)
○ Wildcard source (MPI_ANY_SOURCE)

● MPI chooses to support all three options.
○ This is why MPI has to use matching queues
○ and one of the reasons multithreaded MPI is slow.

● LCI chooses to selectively support some of them.
○ No ordering guarantee.

■ If you care about ordering, just use different tags.
○ No wildcard tag.

■ Do AMTs really need it?
○ Support wildcard source (a slightly weaker form).

■ Essentially, the sender also need to agree they are wildcard-source messages.
■ So LCI can hash them to the same buckets.

● So LCI is able to use a hash table with per-bucket locks.

Tag matching: more details

University of Illinois Urbana-Champaign Computer Science

● Four data structures come into play.
○ Low-level network resources (encapsulated in LCI devices).
○ Packet pools.
○ Matching tables.
○ Completion objects.

We carefully designed these data structures and their interactions so there is no
centralized thread contention point at LCI.

Optimizing Multithreaded Performance

University of Illinois Urbana-Champaign Computer Science

Packet pool: thread-local queues with random packet stealing

Low-level
resources

Poll low-level CQ

Post low-level
recv

Post low-level
send qpqpqp

srq

cq

Packet Pool

Progress

Send packet

Allocate

packet

Memcpy

Send done

Recv done,
insert

Matching TableRecv
Completion

Object
Insert Match

University of Illinois Urbana-Champaign Computer Science

Optimizing Multithreaded Performance

Matching Table: hash table with per-bucket locks

Low-level
resources

Poll low-level CQ

Post low-level
recv

Post low-level
send qpqpqp

srq

cq

Packet Pool

Progress

Send packet

Allocate

packet

Memcpy

Send done

Recv done,
insert

Matching TableRecv
Completion

Object
Insert Match

University of Illinois Urbana-Champaign Computer Science

Optimizing Multithreaded Performance

Completion object: Atomic-based synchronizer/queue; Replication.

Low-level
resources

Poll low-level CQ

Post low-level
recv

Post low-level
send qpqpqp

srq

cq

Packet Pool

Progress

Send packet

Allocate

packet

Memcpy

Send done

Recv done,
insert

Matching TableRecv
Completion

Object
Insert Match

University of Illinois Urbana-Champaign Computer Science

Optimizing Multithreaded Performance

Low-level resources: No coarse-grained locks; Replication.

Poll low-level CQ

Post low-level
recv

Post low-level
send

Low-level
resources

qpqpqp

srq

cq

Packet Pool

Progress

Send packet

Allocate

packet

Memcpy

Send done

Recv done,
insert

Matching TableRecv
Completion

Object
Insert Match

University of Illinois Urbana-Champaign Computer Science

Optimizing Multithreaded Performance

Computer Science

Case Study: HPX LCI parcelport

University of Illinois Urbana-Champaign

● HPX has a communication abstraction similar to RPCs/Active Messages.
○ Invoke a function with provided arguments on remote processes.
○ All threads can make such RPC calls.

● After the argument serialization, the job is to transfer the following messages
per RPC invocation:

○ One header message:
■ A short message with a size upper bound.
■ Mainly for transferring control information.
■ Can piggyback small data.

○ Optional multiple follow-up messages:
■ For data transfer.
■ Of arbitrary size.

follow-up0

One HPX RPC

header

follow-up1

follow-up2

Background

University of Illinois Urbana-Champaign Computer Science

Use LCI_putmna (eager put w. target buffer allocation “no-copy”) for header message.

Use LCI_send/recv for follow-up messages

Use completion queues for completion notification

LCI_putmna

LCI_send

LCI_send

CQ0

LCI_recv

LCI_recv

put_parcel(parcel)

handle_parcel(parcel)

CQ1

background_work

CQ1

background_work

cleanup(parcel)

header

followup

followup

LCI Parcelport

University of Illinois Urbana-Champaign Computer Science

LCI_putmna

LCI_send

LCI_send

CQ0

LCI_recv

LCI_recv

put_parcel(parcel)

handle_parcel(parcel)

CQ1

background_work

CQ1

background_work

cleanup(parcel)

Use LCI_putma (eager put w. target buffer allocation “no-copy”) for header message.

Use LCI_send/recv for follow-up messages

Use completion queues for completion notification

header

followup

followup

LCI Parcelport

University of Illinois Urbana-Champaign Computer Science

LCI_putmna

LCI_send

LCI_send

CQ0

LCI_recv

LCI_recv

put_parcel(parcel)

handle_parcel(parcel)

CQ1

background_work

CQ1

background_work

cleanup(parcel)

Use LCI_putma (eager put w. target buffer allocation “no-copy”) for header message.

Use LCI_send/recv for follow-up messages

Use completion queues for completion notification

header

followup

followup

LCI Parcelport

University of Illinois Urbana-Champaign Computer Science

LCI Parcelport

University of Illinois Urbana-Champaign Computer Science

In addition,

● Explicit progress control.
○ LCI parcelport can spawn dedicated progress threads.

● Low-level network resource replication.
○ LCI parcelport can allocate multiple LCI devices and split communication among them.

● Have to use preposted receives + request testing for header messages.
○ Additional tag matching, ordering, memory copy overheads.

● Have to acquire locks when testing the shared preposted receive.
○ Could be worse when considering progress engine.

● Have to use a request pool to manage a large number of pending operations.
○ Locking overhead.
○ Overhead of testing individual requests.

● MPI typically uses coarse-grained locks on low-level resources.
○ Lost concurrency.

● Difficulties of replicating low-level resources.
○ No portable way across MPI vendors.
○ Scalability issues.

Comparing MPI Parcelport

University of Illinois Urbana-Champaign Computer Science

Computer Science

Performance

University of Illinois Urbana-Champaign

● Overview:
○ Astrophysical application simulating

steller merger.
○ Adaptive mesh refinement + Fast

Multipole method.
○ Built on top of HPX + Kokkos.

● Full-system runs (1720 GPU nodes)
on Perlmutter

○ Production settings.
○ LCI achieves 1.7x speedup over MPI

● Similar speedups (1.5x-2.5x) on
other platforms

○ SDSC Expanse (128 nodes), Frontera
(256 nodes), NCSA Delta (64 nodes),
Ookami (128 nodes)

Octo-Tiger (on top of HPX+MPI/LCI)

University of Illinois Urbana-Champaign Computer Science

1.7x

● Overview
○ Tile-based low-rank Cholesky

approximation.
○ Used in applications such as

geostatistical modeling.
○ Built on top of PaRSEC

● LCI outperforms MPI by 12%.

HiCMA (on top of PaRSEC+MPI/LCI)

University of Illinois Urbana-Champaign Computer Science

Lightweight Communication Interface:
 High-Performance Communication Support for Asynchronous

Many-Task Systems

Source code & Document & Examples: https://github.com/uiuc-hpc/lci

If you are interested in porting your system onto LCI, let us know!

Computer ScienceUniversity of Illinois Urbana-Champaign

Q&A: Jiakun Yan (jiakuny3@illinois.edu)

https://github.com/uiuc-hpc/LC/tree/dev-v1.7
mailto:jiakuny3@illinois.edu

