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Bulk-Synchronous Programming (BSP)
All processes work in lock steps.

Traditionally
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Collective communication

Coarse-grained messages

No or a few pending operations

Single thread

Traditional Comm. Characteristics
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● Architectures are getting heterogeneous with more on-node parallelism
○ More CPU cores per node.
○ Couple of GPUs per node.
○ Uneven cores.

● Programming models are getting asynchronous, over-subscripted, dynamic.
○ Asynchronous Many-Task Systems!

● More and more irregular, dynamic applications.
○ Graph analytics.
○ Sparse algebra.
○ Adaptive algorithms.

Now
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Point-to-point communication

Fine-grained messages

Larger number of concurrent messages

Multiple threads

Collective communication

Coarse-grained messages

No or a few pending operations

Single thread

The optimization focus of traditional communication libraries is still mainly on the 

left. This motivates the Lightweight Communication Interface (LCI) project.

Shifts in Comm. Characteristics
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● Designed with AMTs as the target clients.
○ Should also apply to other irregular applications such as graph analytics/sparse linear algebra.

● A research tool.
○ Help us understand how to structure communication libraries and design their interfaces to 

better match AMTs’ needs.
● Focuses:

○ Point-to-point communication.
○ Fine-grained messages.
○ Many pending operations.
○ Multithreaded environment.

Lightweight Communication Interface (LCI)
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● C interface with C/C++ implementation.
● Network backends:

○ libibverbs (for Infiniband)
○ libfabric (for all others, e.g. Slingshot-11)
○ UCX (experimental)

● Existing clients and collaborators:
○ Gluon[1]: graph analytics (Keshav Pingali)
○ PaRSEC[2]: AMT (George Bosilca)
○ HPX[3]: AMT (Hartmut Kaiser)

[1] H. -V. Dang et al., "A Lightweight Communication Runtime for Distributed Graph Analytics," 2018 IEEE International Parallel and Distributed 
Processing Symposium (IPDPS), Vancouver, BC, Canada, 2018, pp. 980-989, doi: 10.1109/IPDPS.2018.00107.
[2] Mor, Omri, George Bosilca, and Marc Snir. "Improving the Scaling of an Asynchronous Many-Task Runtime with a Lightweight Communication 
Engine." Proceedings of the 52nd International Conference on Parallel Processing. 2023.
[3] Yan, Jiakun, Hartmut Kaiser, and Marc Snir. "Design and Analysis of the Network Software Stack of an Asynchronous Many-task System--The LCI 
parcelport of HPX." Proceedings of the SC'23 Workshops of The International Conference on High Performance Computing, Network, Storage, and 
Analysis. 2023.

LCI: Current Status
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Computer Science

Interface
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● Flexibility
○ Provide users with versatile communication primitives and synchronization mechanisms.

● Explicit control
○ Give users explicit control of communication resources and behaviors.

Essentially, give users versatile and orthogonal options to best suit their needs.

LCI Interface: Principles
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● For a point-to-point communication to happen, we need
○ source buffer & target buffer

● Two-sided Send/Receive:
○ Sender specifies the source buffer.
○ Receiver specifies the target buffer.

● One-sided Put:
○ Sender specifies both the source and target buffers.

● One-sided Get:
○ Receiver specifies both the source and target buffers.

● One-sided Put “allocate”:
○ Sender specifies the source buffer. LCI allocates the target buffers.

Communication Primitive
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● Depending on how much data to transfer.
○ Four protocols are available.

● Small message (e.g. <= 32B).
○ Inline protocol (eager protocol without memcpy).

● Medium (e.g. <= 8KB).
○ Buffer copy protocol (eager protocol with memcpy).

● Long (arbitrary size).
○ Rendezvous protocol.
○ No memory copy but additional handshakes.

● IO-VEC (one medium + multiple long).
○ Rendezvous protocol with merged handshakes.

All thresholds are visible and configurable. Users can explicitly choose which 
communication protocol to use.

Communication Protocol
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● LCI offers four completion notification mechanisms:
○ Synchronizers
○ Completion queues
○ Callback functions
○ No completion

● More details: synchronizers.
○ Completion objects for individual operations similar to MPI requests, but

■ Can have multiple producers.
■ Completely thread-safe.

Completion Mechanism
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● (For eager messages) direct access to internal pre-registered buffers 
(packets).

● (For rendezvous messages) direct access to memory registration.
● Explicit control over progress engine invocation.
● Explicit low-level resource representation (LCI device) and the ability to 

replicate it.

Other options
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● Who provides the source/target buffers
○ Two-sided send/recv
○ One-sided put/get

● How much data to send
○ Short (inline), medium (eager), long (zero-copy)
○ iovec (one medium + multiple long)

● Completion mechanisms
○ Synchronizer
○ Completion queue
○ Active message handler
○ No signaling

● For eager message, whether the source/target buffers are user-provided or LCI-provided
○ Using LCI-provided buffers can potentially save one memory copy

● For long messages, whether the source/target buffers are registered.
● How to match the send and recv

○ tag only/rank+tag
● Explicit progress engine behavior control
● Explicit low-level resource (LCI devices) representation and replication

All options are orthogonal.

Users can choose any valid 
combination.

Interface
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Computer Science

Design
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● Focus on libibverbs as the native network interface.
○ To some extent, libfabric/UCX can be viewed as a slightly simpler/higher-level version 

of it.
● Focus on the the eager protocol (medium messages).

○ The inline protocol (short messages) is very similar.
○ The rendezvous protocol (long messages) used in LCI is similar to those used in other 

communication libraries.
● Focus on send/recv, put allocate primitives.

○ Regular put/get are simply RDMA operation wrappers.

Overview
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● Low-level resources
○ Queue pairs (send&recv queues)
○ Shared receive queues
○ completion queues

● Progress engine
○ Responsible for all background works 

needed to support communications.
○ Implicit in MPI (MPI_Test…).
○ Explicit in LCI (LCI_progress).

Progress

Low-level
resources

qpqpqp

srq

cq

Two concepts
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Prepost receives

University of Illinois Urbana-Champaign Computer Science

● libibverbs does not like unexpected 
messages.

○ Receive-Not-Ready errors are devastating 
to application’s performance.

● Progress engine always makes sure 
there are enough preposted receives. 

○ So all messages are expected.
Progress

Low-level
resources

qpqpqp

Post low-level 
recv

srq

cq



Low-level
resources

Post low-level 
recv

qpqpqp

srq

cq

Packet Pool

Progress

Allocate

packet

Packet pool
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Libibverbs requires all communication buffers to be registered.
Packet pool: allocator of pre-registered fixed-sized buffers.



Low-level
resources

Post low-level 
recv

qpqpqp

srq

cq

Packet Pool

Progress

Allocate

packet

Send messages
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Post low-level 
sendSend packet

Memcpy



Low-level
resources

Post low-level 
recv

qpqpqp

srq

cq

Packet Pool

Progress

Allocate

packet

Polling for incoming messages

University of Illinois Urbana-Champaign Computer Science

Post low-level 
sendSend packet

Memcpy

Send done

Poll low-level CQ
Recv done

React accordingly



Low-level
resources

Post low-level 
recv

qpqpqp

srq

cq

Packet Pool

Progress

Allocate

packet

LCI_putma: put medium allocate
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Post low-level 
sendLCI_putma packet

Memcpy

Send done

Poll low-level CQ
Recv done

Completion object



● Users can directly assemble their message in a pre-allocated/reused packet.

Low-level
resources

Post low-level 
recv

Post low-level 
send qpqpqp

srq

cq

Packet Pool

Progress

LCI_putmnapacket

Allocate

packet

Completion 
Object

Recv done

Send done

Poll low-level CQ

LCI_putmna: LCI put medium “no-copy” allocate
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Low-level
resources

Poll low-level CQ

Post low-level 
recv

Post low-level 
send qpqpqp

srq

cq

Packet Pool

Progress

LCI_sendm packet

Allocate

packet

Memcpy

Send done

Recv done

Matching TableLCI_recvm
Completion 

Object

Insert
user

buffer

Memcpy

LCI_sendm/recvm: send/recv medium
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Low-level
resources

Poll low-level CQ

Post low-level 
recv

Post low-level 
send qpqpqp

srq

cq

Packet Pool

Progress

Allocate

packet

Send done

Recv done

Matching TableLCI_recvmn
Completion 

Object

Insert

LCI_sendmnpacket

packet

LCI_sendmn/recvmn: send/recv medium “no-copy”
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● What to support:
○ Ordering
○ Wildcard tag (MPI_ANY_TAG)
○ Wildcard source (MPI_ANY_SOURCE)

● MPI chooses to support all three options.
○ This is why MPI has to use matching queues
○ and one of the reasons multithreaded MPI is slow.

● LCI chooses to selectively support some of them.
○ No ordering guarantee.

■ If you care about ordering, just use different tags.
○ No wildcard tag.

■ Do AMTs really need it?
○ Support wildcard source (a slightly weaker form).

■ Essentially, the sender also need to agree they are wildcard-source messages.
■ So LCI can hash them to the same buckets.

● So LCI is able to use a hash table with per-bucket locks.

Tag matching: more details
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● Four data structures come into play.
○ Low-level network resources (encapsulated in LCI devices).
○ Packet pools.
○ Matching tables.
○ Completion objects.

We carefully designed these data structures and their interactions so there is no 
centralized thread contention point at LCI.

Optimizing Multithreaded Performance
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Packet pool: thread-local queues with random packet stealing

Low-level
resources

Poll low-level CQ

Post low-level 
recv

Post low-level 
send qpqpqp

srq

cq

Packet Pool

Progress

Send packet

Allocate

packet

Memcpy

Send done

Recv done,
insert

Matching TableRecv
Completion 

Object
Insert Match
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Optimizing Multithreaded Performance



Matching Table: hash table with per-bucket locks

Low-level
resources

Poll low-level CQ

Post low-level 
recv

Post low-level 
send qpqpqp

srq

cq

Packet Pool

Progress

Send packet

Allocate

packet

Memcpy

Send done

Recv done,
insert

Matching TableRecv
Completion 

Object
Insert Match
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Completion object: Atomic-based synchronizer/queue; Replication.

Low-level
resources

Poll low-level CQ

Post low-level 
recv

Post low-level 
send qpqpqp

srq

cq

Packet Pool

Progress

Send packet

Allocate

packet

Memcpy

Send done

Recv done,
insert

Matching TableRecv
Completion 

Object
Insert Match
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Low-level resources: No coarse-grained locks; Replication.

Poll low-level CQ

Post low-level 
recv

Post low-level 
send

Low-level
resources

qpqpqp

srq

cq

Packet Pool

Progress

Send packet

Allocate

packet

Memcpy

Send done

Recv done,
insert

Matching TableRecv
Completion 

Object
Insert Match
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Computer Science

Case Study: HPX LCI parcelport
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● HPX has a communication abstraction similar to RPCs/Active Messages.
○ Invoke a function with provided arguments on remote processes.
○ All threads can make such RPC calls.

● After the argument serialization, the job is to transfer the following messages 
per RPC invocation:

○ One header message:
■ A short message with a size upper bound.
■ Mainly for transferring control information.
■ Can piggyback small data. 

○ Optional multiple follow-up messages:
■ For data transfer.
■ Of arbitrary size.

follow-up0

One HPX RPC

header 

follow-up1

follow-up2

Background
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Use LCI_putmna (eager put w. target buffer allocation “no-copy”) for header message.

Use LCI_send/recv for follow-up messages

Use completion queues for completion notification

LCI_putmna

LCI_send

LCI_send

CQ0

LCI_recv

LCI_recv

put_parcel(parcel)

handle_parcel(parcel)

CQ1

background_work

CQ1

background_work

cleanup(parcel)

header

followup

followup

LCI Parcelport
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LCI_putmna

LCI_send

LCI_send

CQ0

LCI_recv

LCI_recv

put_parcel(parcel)

handle_parcel(parcel)

CQ1

background_work

CQ1

background_work

cleanup(parcel)

Use LCI_putma (eager put w. target buffer allocation “no-copy”) for header message.

Use LCI_send/recv for follow-up messages

Use completion queues for completion notification

header

followup

followup

LCI Parcelport
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LCI_putmna

LCI_send

LCI_send

CQ0

LCI_recv

LCI_recv

put_parcel(parcel)

handle_parcel(parcel)

CQ1

background_work

CQ1

background_work

cleanup(parcel)

Use LCI_putma (eager put w. target buffer allocation “no-copy”) for header message.

Use LCI_send/recv for follow-up messages

Use completion queues for completion notification

header

followup

followup

LCI Parcelport
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LCI Parcelport
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In addition,

● Explicit progress control.
○ LCI parcelport can spawn dedicated progress threads.

● Low-level network resource replication.
○ LCI parcelport can allocate multiple LCI devices and split communication among them.



● Have to use preposted receives + request testing for header messages.
○ Additional tag matching, ordering, memory copy overheads.

● Have to acquire locks when testing the shared preposted receive.
○ Could be worse when considering progress engine.

● Have to use a request pool to manage a large number of pending operations.
○ Locking overhead.
○ Overhead of testing individual requests. 

● MPI typically uses coarse-grained locks on low-level resources.
○ Lost concurrency.

● Difficulties of replicating low-level resources.
○ No portable way across MPI vendors.
○ Scalability issues.

Comparing MPI Parcelport
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Computer Science

Performance
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● Overview:
○ Astrophysical application simulating 

steller merger.
○ Adaptive mesh refinement + Fast 

Multipole method.
○ Built on top of HPX + Kokkos.

● Full-system runs (1720 GPU nodes) 
on Perlmutter

○ Production settings.
○ LCI achieves 1.7x speedup over MPI

● Similar speedups (1.5x-2.5x) on 
other platforms

○ SDSC Expanse (128 nodes), Frontera 
(256 nodes), NCSA Delta (64 nodes), 
Ookami (128 nodes)

Octo-Tiger (on top of HPX+MPI/LCI)
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● Overview
○ Tile-based low-rank Cholesky 

approximation.
○ Used in applications such as 

geostatistical modeling.
○ Built on top of PaRSEC

● LCI outperforms MPI by 12%.

HiCMA (on top of PaRSEC+MPI/LCI)
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Lightweight Communication Interface:
  High-Performance Communication Support for Asynchronous 

Many-Task Systems

Source code & Document & Examples: https://github.com/uiuc-hpc/lci

If you are interested in porting your system onto LCI, let us know!

Computer ScienceUniversity of Illinois Urbana-Champaign

Q&A: Jiakun Yan (jiakuny3@illinois.edu)

https://github.com/uiuc-hpc/LC/tree/dev-v1.7
mailto:jiakuny3@illinois.edu

