
Omri Mor1, Jiakun Yan1, Hartmut Kaiser2, Marc Snir1
1Department of Computer Science, University of Illinois Urbana-Champaign

2Center of Computation and Technology, Louisiana State University

A Lightweight Communication Interface for Asynchronous Many-Task Systems

Lightweight Communication Interface (LCI) [2]
 
Low-level Communication Library:
- Intended user: high-level library developers
- Similar to UCX, libfabric, and GASNet,

as opposed to MPI

Designed for AMT Runtimes:
- Applies to other irregular applications, such

as graph analytics or sparse linear algebra
- Easily modifiable research library, for

studying communication API design and implementation

Major Features:
- Multithreaded performance as top priority
- Versatile communication interface
- Explicit control of communication behaviors and resources

Motivation
 
Modern Parallel Architecture:
- Increased intra-node parallelism.
- Increased heterogeneity.
- Powerful Interconnect.

Task-based Programming Model:
- Programmers decompose their 

program into tasks along  with their 
dependencies.

- The runtime will handle the mapping, 
scheduling and data movement.

- E.g. HPX, Legion, PaRSEC.
- Communication layer: MPI/GASNet.

New Communication Pattern:
- Multithreaded.
- Irregular destinations.
- Small messages.

HPX [3] and PaRSEC [1]: New LCI Backends [4, 5]

High Performance ParalleX (HPX):
- Implementation of ParalleX execution model, standards-focused C++ API
- Asynchronous task execution and arbitrary task graph construction.
- Developed by the STE||AR Group

Parallel Runtime Scheduling and Execution Controller (PaRSEC):
- Generic framework for executing distributed task-based applications
- Support for multiple Domain-Specific Language backends
- Developed by the Innovative Computing Laboratory (ICL)

at the University of Tennessee, Knoxville

Task-based Multi-Chain Ping-Pong

Motivation:
- Communication layer benchmarks necessary to measure and improve efficiency
- Traditional communication benchmarks do not directly apply to AMT runtimes

Design:
- “Chains” of tasks spawned on two nodes and alternating between nodes
- Task chains associated with data movement
- Tasks optionally execute computation on data

Variables:
- Message size, chain count, chain length, and task granularity

Measurement:
- Basic communication characteristics: latency, message rate, and bandwidth
- Realistic cache effects with task modification of communication buffers
- Communication-communication and computation-communication overlap

Evaluation

Execution Environment:
- Expanse cluster at San Diego Supercomputer Center
- 2× AMD EPYC 7742: 128 cores @ 2.25 GHz with 256 GiB DDR4
- Mellanox ConnectX-6: 2× HDR InfiniBand links in a Hybrid Fat-Tree topology
- Rocky Linux 8.8 with Linux 4.18.0-477.15.1
- Open MPI 4.1.5 with UCX 1.14.0, using AMD Optimizing C/C++ Compiler

Results:

References
1. George Bosilca et al. “DAGuE: A generic distributed DAG engine for High Performance Computing”. 

Parallel Computing. 38, 1. 2012. (https://github.com/icldisco/parsec)
2. Hoang-Vu Dang, Marc Snir, and William Gropp. "Towards millions of communicating threads." 

Proceedings of the 23rd European MPI Users' Group Meeting. 2016. (https://github.com/uiuc-hpc/LC)
3. Hartmut Kaiser et al. "HPX: A task based programming model in a global address space." Proceedings 

of the 8th International Conference on Partitioned Global Address Space Programming Models. 2014. 
(https://github.com/STEllAR-GROUP/hpx)

4. Omri Mor, George Bosilca, and Marc Snir. "Improving the Scaling of an Asynchronous Many-Task 
Runtime with a Lightweight Communication Engine." Proceedings of the 52nd International 
Conference on Parallel Processing. 2023.

5. Jiakun Yan, Hartmut Kaiser, and Marc Snir. "Design and Analysis of the Network Software Stack of an 
Asynchronous Many-task System--The LCI parcelport of HPX." Proceedings of the SC'23 Workshops 
of The International Conference on High Performance Computing, Network, Storage, and Analysis. 
2023.

Motivation
 
Modern Parallel Architecture:
- Increased intra-node parallelism
- Increased heterogeneity
- Improved networking hardware

Asynchronous Many-Task (AMT) Model:
- Algorithms decomposed into tasks & dependencies
- Smart runtime handles mapping, scheduling, and 

data movement of tasks onto compute resources
- Examples: HPX, PaRSEC, Legion, StarPU
- Communication layer: usually MPI or GASNet

New Communication Paradigm:
- Multithreaded
- Irregular destinations
- Message classes: control & data
- Communication priorities
- Nondeterministic, execution-based ordering

A BSP program

A task-based program
Node 1Node 0

Task 3

Task 2

Task 1

Task 0

Communication Latency
- Parameters:

- # chains: 512 per node
- Message size: 16 B–256 KiB

- Measurement: 
- Mean time between task 

executions, driven by 
communication latency

- LCI reduces latency in both 
runtimes, with significant 
impact on HPX performance

Message Rate
- Parameters:

- Message size: 16 KiB
- # chains: 1–2048 per node

- Measurement: message rate
- Using LCI greatly improves the 

maximum message rates of both 
PaRSEC and HPX

- MPI backends for both runtimes 
suffer degraded performance when 
many messages are communicated 
simultaneously

Computation Efficiency
- Parameters:

- Task size: 1 µs–10 ms
- Message size: 16 KiB
- # chains: 512 per node

- Measurement: 
- Computation efficiency

- Both runtimes are able to 
overlap computations and 
communications more 
efficiently when using LCI

https://github.com/icldisco/parsec


Omri Mor, Jiakun Yan, and Marc Snir
Department of Computer Science, University of Illinois Urbana-Champaign

A Lightweight Communication Interface for Asynchronous Many-Task Systems

Lightweight Communication Interface (LCI) [1]
 
Low-level Communication Library:
- Intended user: high-level library developers
- Similar to UCX or libfabric,

as opposed to MPI or GASNet

Designed for AMT Runtimes:
- Applies to other irregular applications, such

as graph analytics or sparse linear algebra
- Easily modifiable research library, for

studying communication API design and implementation

Major Features:
- Flexible communication primitives and signaling mechanisms
- Better multithreaded performance
- Explicit runtime control of communication behaviors and resources

Motivation
 
Modern Parallel Architecture:
- Increased intra-node parallelism.
- Increased heterogeneity.
- Powerful Interconnect.

Task-based Programming Model:
- Programmers decompose their 

program into tasks along  with their 
dependencies.

- The runtime will handle the mapping, 
scheduling and data movement.

- E.g. HPX, Legion, PaRSEC.
- Communication layer: MPI/GASNet.

New Communication Pattern:
- Multithreaded.
- Irregular destinations.
- Small messages.

HPX [2] and PaRSEC [3]

High Performance ParalleX (HPX):
- Implementation of ParalleX execution model
- Standards-focused C++ API
- Developed by the STE||AR Group

Parallel Runtime Scheduling and Execution Controller (PaRSEC):
- Generic framework for executing distributed task-based applications
- Support for multiple Domain-Specific Language backends
- Developed by the Innovative Computing Laboratory (ICL)

at the University of Tennessee, Knoxville
-
-

Task-based Multi-Chain Ping-Pong

Motivation:
- Communication layer benchmarks necessary to measure and improve efficiency
- Traditional communication benchmarks do not apply to task-based runtimes
- Cross-runtime comparisons enable identification of implementation decisions

Design:
- Serial “chain” of tasks, located on different processes
- Tasks associated with different data, mandating communication
- Multiple sets of tasks approximate traditional benchmark “window size”
- Tasks optionally execute operations on data

Features:
- Variable message size, chain count, and chain length
- Measure compute/communication overlap with adjustable compute intensity
- Bidirectional measurement by round-robin instantiation of multiple independent 

chains on different initial processes
- Comprehensive output statistics for thorough performance characterization

Evaluation

Execution Environment:
- Expanse cluster at San Diego Supercomputer Center
- 2× AMD EPYC 7742: 128 cores @ 2.25 GHz with 256 GiB DDR4
- Mellanox ConnectX-6: 2× HDR InfiniBand links in a Hybrid Fat-Tree topology
- Rocky Linux 8.8 with Linux 4.18.0-477.15.1

Experiments:
- Vary message size, from 8 B to 256 KiB
- Vary number of chains, from 256 to 4096
- Vary compute intensity: 0µs, 10µs, 100µs, and 1000µs task length

Results:
-

References

1. Hoang-Vu Dang, Marc Snir, and William Gropp. "Towards millions of 
communicating threads." Proceedings of the 23rd European MPI Users' Group 
Meeting. 2016. (https://github.com/uiuc-hpc/LC/tree/dev-v1.7)

2. Hartmut Kaiser et al. "HPX: A task based programming model in a global 
address space." Proceedings of the 8th International Conference on Partitioned 
Global Address Space Programming Models. 2014. 
(https://github.com/STEllAR-GROUP/hpx)

3. George Bosilca et al. “DAGuE: A generic distributed DAG engine for High 
Performance Computing”. Parallel Computing. 38, 1. 2012. 
(https://github.com/icldisco/parsec)

4.
5.

Motivation
 
Modern Parallel Architecture:
- Increased intra-node parallelism
- Increased heterogeneity
- Programmable networking

Asynchronous Many-Task (AMT) Model:
- Algorithms decomposed into tasks & dependencies
- Smart runtime handles mapping, scheduling, and 

data movement of tasks onto compute resources
- Examples: HPX, PaRSEC, Legion, StarPU
- Communication layer: usually MPI or GASNet

New Communication Paradigm:
- Multithreaded
- Irregular destinations
- Message classes: control & data
- Communication priorities
- Nondeterministic, execution-based ordering

A BSP program

A task-based program
Process 1Process 0

Task 3

Task 2

Task 1

Task 0



Jiakun Yan1, Hartmut Kaiser2, Marc Snir1
1Department of Computer Science, University of Illinois Urbana-Champaign

2Center of Computation and Technology, Louisiana State University

Efficient Message Passing Support for Asynchronous Many-Task Systems

Lightweight Communication Interface (LCI) [1]
 
A low-level communication library.
- Intended user: high-level library developers.
- Like UCX/Libfabric/GASNet, as opposed 

to MPI.

Designed with task-based runtime as 
target clients.
- Applies to other irregular applications such 

as graph analysis/sparse linear algebra.

Major features:
- Flexible communication primitives and signaling mechanisms.
- Better multithreaded performance.
- Explicit user control of communication behaviors and resources.

Motivation
 
Modern Parallel Architecture:
- Increased intra-node parallelism.
- Increased heterogeneity.
- Powerful Interconnect.

Task-based Programming Model:
- Programmers decompose their 

program into tasks along  with their 
dependencies.

- The runtime will handle the mapping, 
scheduling and data movement.

- E.g. HPX, Legion, PaRSEC.
- Communication layer: MPI/GASNet.

New Communication Pattern:
- Multithreaded.
- Irregular destinations.
- Small messages.

HPX [2]

Task-based programming model with implicit task dependency 
graphs.

- Users invoke tasks like sequential code, and the runtime analyzes data usage and 
builds a task dependency graph.

Its communication layer implements a “parcelport” interface.
- A parcel consists of a small buffer (control data + small arguments) and 

optionally a few large zero-copy buffers.
- Current implementations: TCP, MPI, libfabric (work in progress).

The LCI Parcelport for HPX

Dedicated LCI progress threads:
- Better cache locality, cleaner worker thread behavior, more responsive and 

consistent network behavior.
- Instead of implicit background works in every MPI calls.

One-sided put operation:
- Only send. No receive needs to be posted.
- Receiver will get the references to the data from LCI completion queues.
- Instead of pre-posting multiple receives, probing, and then posting more follow-up 
receives in the MPI parcelport.

Directly put an “iovec” message:
- Send one eager message and multiple rendezvous messages in one call.
- Instead of multiple send/recv in the MPI parcelport.

Use Completion queues to deliver messages completion information:
-  Instead of repeated MPI_Test for lots of MPI requests.

No mutex locks on HPX/LCI message passing path:
- Instead of multiple lock-protected layers in the HPX/MPI message passing path: 
parcel queues, connection cache, pending request store, and internal lock in MPI. 

Other Optimizations:
- Thread-local backlog queues with aggregation.
- Separate network resources/progress threads for eager/rendezvous messages.

Evaluation

Platform: SDSC Expanse
- AMD EPYC 7742, 2 sockets, 4 NUMA nodes per socket, 128 cores (per node)
- 256GB Memory per node.
- HDR InfiniBand Interconnect.

Application: Octo-Tiger
- Astrophysics program simulating the evolution of star systems.
- Based on the fast multipole method on adaptive Octrees.

Results:
- LCI v.s. MPI:

- The LCI parcelport 
surpassed the MPI 
parcelport by more
 than 40%.

- NUMA effects: 

- NUMA effects are
 significant.

- LCI is more sensitive
 to NUMA effects than
 MPI.

- Specific optimizations:

- Removing locks on the 
communication path helps.
 (~40% speedup)

- Using separate resources 
helps. (~4% speedup)

- The backlog queue doesn’t 
- help. (~3% slowdown)

References

1. Dang, Hoang-Vu, Marc Snir, and William Gropp. "Towards millions of 
communicating threads." Proceedings of the 23rd European MPI Users' Group 
Meeting. 2016. (https://github.com/uiuc-hpc/LC/tree/dev-v1.7)

2. Kaiser, Hartmut, et al. "HPX: A task based programming model in a global 
address space." Proceedings of the 8th International Conference on Partitioned 
Global Address Space Programming Models. 2014. 
(https://github.com/STEllAR-GROUP/hpx)

3. Marcello, Dominic C., et al. "octo-tiger: a new, 3D hydrodynamic code for 
stellar mergers that uses hpx parallelization." Monthly Notices of the Royal 
Astronomical Society 504.4 (2021): 5345-5382. 
(https://github.com/STEllAR-GROUP/octotiger)

Motivation
 
Modern Parallel Architecture:
- Increased intra-node parallelism.
- Increased heterogeneity.
- Powerful Interconnect.

Task-based Programming Model:
- Programmers decompose their programs into tasks 

along with their dependencies.
- The runtime will handle the mapping, scheduling, 

and data movement.
- E.g. HPX, Legion, PaRSEC.
- Communication layer: MPI/GASNet.

New Communication Pattern:
- Multithreaded.
- Irregular destinations.
- Small messages.

A BSP program

A task-based program



Jiakun Yan1, Hartmut Kaiser2, Marc Snir1
1Department of Computer Science,, University of Illinois at Urbana-Champaign

2Center of Computation and Technology, Louisiana State University

Efficient Message Passing Support for Asynchronous Many-Task Systems

ACKNOWLEDGEMENTS

Check to make sure you’ve acknowledged partner and funding agencies, 
either with text or with their logos.

Lightweight Communication Interface (LCI) [1]
 
A low-level communication library.
- Intended user: high-level library developers.
- Like UCX/Libfabric/GASNet, as opposed to MPI.

Designed with task-based runtime as target clients.
- Should also apply to other irregular applications such as graph 

analysis/sparse linear algebra.

Major features:
- Flexible communication primitives and signaling mechanisms.
- Better multithreaded performance.
- Explicit user control of communication behaviors and resources.

Motivation
 
Modern Parallel Architecture:
- Increased intra-node parallelism.
- Increased heterogeneity.
- Powerful Interconnect.

Task-based Programming Model:
- Programmers decompose their 

program into tasks along  with their 
dependencies.

- The runtime will handle the mapping, 
scheduling and data movement.

- E.g. HPX, Legion, PaRSEC.
- Communication layer: MPI/GASNet.

New Communication Pattern:
- Multithreaded.
- Irregular destinations.
- Small messages.

HPX [2]

Task-based programming model with implicit task dependency 
graphs.

- Users invoke tasks like sequential code, and the runtime analyzes data usage and 
builds a task dependency graph.

Its communication layer implements a “parcelport” interface.
- A parcel consists of a small buffer (control data + small arguments) and 

optionally a few large zero-copy buffers.
- Current implementations: TCP, MPI, libfabric (work in progress).

The LCI Parcelport for HPX

Dedicated LCI progress threads:
- Better cache locality, cleaner worker thread behavior, more responsive and 

consistent network behavior.
- Instead of implicit background works in every MPI calls.

One-sided put operation:
- Only send. No receive needs to be posted.
- Receiver will get the references to the data from LCI completion queues.
- Instead of pre-posting multiple receives, probing, and then posting more follow-up 
receives in the MPI parcelport.

Directly put an “iovec” message:
- Send one eager message and multiple rendezvous messages in one call.
- Instead of multiple send/recv in the MPI parcelport.

Use Completion queues to deliver messages completion information:
-  Instead of repeated MPI_Test for lots of MPI requests.

No mutex locks on HPX/LCI message passing path:
- Instead of multiple lock-protected layers in the HPX/MPI message passing path: 
parcel queues, connection cache, pending request store, and internal lock in MPI. 

Other Optimizations:
- Thread-local backlog queues with aggregation.
- Separate network resources/progress threads for eager/rendezvous messages.

Evaluation

Platform: SDSC Expanse
- AMD EPYC 7742, 2 sockets, 4 NUMA nodes per socket, 128 cores (per 

node)
- 256GB Memory per node.
- HDR InfiniBand Interconnect.

Application: Octo-Tiger
- Astrophysics program simulating the evolution of star systems.
- Based on the fast multipole method on adaptive Octrees.

Results:
- LCI v.s. MPI:

- NUMA effects: 

- Specific optimizations:

References

1. Dang, Hoang-Vu, Marc Snir, and William Gropp. "Towards millions of 
communicating threads." Proceedings of the 23rd European MPI Users' 
Group Meeting. 2016. (https://github.com/uiuc-hpc/LC/tree/dev-v1.7)

2. Kaiser, Hartmut, et al. "HPX: A task based programming model in a 
global address space." Proceedings of the 8th International Conference 
on Partitioned Global Address Space Programming Models. 2014. 
(https://github.com/STEllAR-GROUP/hpx)

3. Marcello, Dominic C., et al. "octo-tiger: a new, 3D hydrodynamic code 
for stellar mergers that uses hpx parallelization." Monthly Notices of 
the Royal Astronomical Society 504.4 (2021): 5345-5382. 
(https://github.com/STEllAR-GROUP/octotiger)

Motivation
 
Modern Parallel Architecture:
- Increased intra-node parallelism.
- Increased heterogeneity.
- Powerful Interconnect.

Task-based Programming Model:
- Programmers decompose their programs into 

tasks along with their dependencies.
- The runtime will handle the mapping, 

scheduling, and data movement.
- E.g. HPX, Legion, PaRSEC.
- Communication layer: MPI/GASNet.

New Communication Pattern:
- Multithreaded.
- Irregular destinations.
- Small messages.

A BSP program

A task-based program

A low-level communication 
library.
- Intended user: high-level library 

developers.
- Like UCX/Libfabric/GASNet, as 

opposed to MPI.

Designed with task-based 
runtime as target clients.
- Applies to other irregular applications 

such as graph analysis/sparse linear 
algebra.Major features:

- Flexible communication primitives and signaling 
mechanisms.

- Better multithreaded performance.
- Explicit user control of communication behaviors and 

resources.

- The LCI parcelport 
surpassed the MPI 
parcelport by more 
than 40%.

- NUMA effects are 
significant.

- LCI is more sensitive 
to NUMA effects than 
MPI.

- Removing locks on the 
communication path helps. 
(~40% speedup)

- Using separate resources 
helps. (~4% speedup)

- The backlog queue doesn’t 
help. (~3% slowdown)



All data 
as an 

eager/iovec 
message

The LCI Parcelport Layer

sender receiver

header

zero-copy
chunk indexes

non-zero-copy
chunks

release
tag

The MPI Parcelport Layer

sender receiver

zero-copy
chunks



RTS

RTR

RDMA
Write

FIN

RTS
Piggyback

RTR

RDMA
Writes

FIN

The MPI Layer (classical)
transmit a long message

The LCI Layer
transmit a iovec

(one short message + multiple 
long messages)

sender receiver sender receiver



Commonly used logos


