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A Lightweight Communication Interface for Asynchronous Many-Task Systems

Lightweight Communication Interface (LCI) [2]
 
Low-level Communication Library:
- Intended user: high-level library developers
- Similar to UCX, libfabric, and GASNet,

as opposed to MPI

Designed for AMT Runtimes:
- Applies to other irregular applications, such

as graph analytics or sparse linear algebra
- Easily modifiable research library, for

studying communication API design and implementation

Major Features:
- Multithreaded performance as top priority
- Versatile communication interface
- Explicit control of communication behaviors and resources

Motivation
 
Modern Parallel Architecture:
- Increased intra-node parallelism.
- Increased heterogeneity.
- Powerful Interconnect.

Task-based Programming Model:
- Programmers decompose their 

program into tasks along  with their 
dependencies.

- The runtime will handle the mapping, 
scheduling and data movement.

- E.g. HPX, Legion, PaRSEC.
- Communication layer: MPI/GASNet.

New Communication Pattern:
- Multithreaded.
- Irregular destinations.
- Small messages.

HPX [3] and PaRSEC [1]: New LCI Backends [4, 5]

High Performance ParalleX (HPX):
- Implementation of ParalleX execution model, standards-focused C++ API
- Asynchronous task execution and arbitrary task graph construction.
- Developed by the STE||AR Group

Parallel Runtime Scheduling and Execution Controller (PaRSEC):
- Generic framework for executing distributed task-based applications
- Support for multiple Domain-Specific Language backends
- Developed by the Innovative Computing Laboratory (ICL)

at the University of Tennessee, Knoxville

Task-based Multi-Chain Ping-Pong

Motivation:
- Communication layer benchmarks necessary to measure and improve efficiency
- Traditional communication benchmarks do not directly apply to AMT runtimes

Design:
- “Chains” of tasks spawned on two nodes and alternating between nodes
- Task chains associated with data movement
- Tasks optionally execute computation on data

Variables:
- Message size, chain count, chain length, and task granularity

Measurement:
- Basic communication characteristics: latency, message rate, and bandwidth
- Realistic cache effects with task modification of communication buffers
- Communication-communication and computation-communication overlap

Evaluation

Execution Environment:
- Expanse cluster at San Diego Supercomputer Center
- 2× AMD EPYC 7742: 128 cores @ 2.25 GHz with 256 GiB DDR4
- Mellanox ConnectX-6: 2× HDR InfiniBand links in a Hybrid Fat-Tree topology
- Rocky Linux 8.8 with Linux 4.18.0-477.15.1
- Open MPI 4.1.5 with UCX 1.14.0, using AMD Optimizing C/C++ Compiler

Results:
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Motivation
 
Modern Parallel Architecture:
- Increased intra-node parallelism
- Increased heterogeneity
- Improved networking hardware

Asynchronous Many-Task (AMT) Model:
- Algorithms decomposed into tasks & dependencies
- Smart runtime handles mapping, scheduling, and 

data movement of tasks onto compute resources
- Examples: HPX, PaRSEC, Legion, StarPU
- Communication layer: usually MPI or GASNet

New Communication Paradigm:
- Multithreaded
- Irregular destinations
- Message classes: control & data
- Communication priorities
- Nondeterministic, execution-based ordering

A BSP program

A task-based program
Node 1Node 0

Task 3

Task 2

Task 1

Task 0

Communication Latency
- Parameters:

- # chains: 512 per node
- Message size: 16 B–256 KiB

- Measurement: 
- Mean time between task 

executions, driven by 
communication latency

- LCI reduces latency in both 
runtimes, with significant 
impact on HPX performance

Message Rate
- Parameters:

- Message size: 16 KiB
- # chains: 1–2048 per node

- Measurement: message rate
- Using LCI greatly improves the 

maximum message rates of both 
PaRSEC and HPX

- MPI backends for both runtimes 
suffer degraded performance when 
many messages are communicated 
simultaneously

Computation Efficiency
- Parameters:

- Task size: 1 µs–10 ms
- Message size: 16 KiB
- # chains: 512 per node

- Measurement: 
- Computation efficiency

- Both runtimes are able to 
overlap computations and 
communications more 
efficiently when using LCI

https://github.com/icldisco/parsec


Omri Mor, Jiakun Yan, and Marc Snir
Department of Computer Science, University of Illinois Urbana-Champaign

A Lightweight Communication Interface for Asynchronous Many-Task Systems

Lightweight Communication Interface (LCI) [1]
 
Low-level Communication Library:
- Intended user: high-level library developers
- Similar to UCX or libfabric,

as opposed to MPI or GASNet

Designed for AMT Runtimes:
- Applies to other irregular applications, such

as graph analytics or sparse linear algebra
- Easily modifiable research library, for

studying communication API design and implementation

Major Features:
- Flexible communication primitives and signaling mechanisms
- Better multithreaded performance
- Explicit runtime control of communication behaviors and resources

Motivation
 
Modern Parallel Architecture:
- Increased intra-node parallelism.
- Increased heterogeneity.
- Powerful Interconnect.

Task-based Programming Model:
- Programmers decompose their 

program into tasks along  with their 
dependencies.

- The runtime will handle the mapping, 
scheduling and data movement.

- E.g. HPX, Legion, PaRSEC.
- Communication layer: MPI/GASNet.

New Communication Pattern:
- Multithreaded.
- Irregular destinations.
- Small messages.

HPX [2] and PaRSEC [3]

High Performance ParalleX (HPX):
- Implementation of ParalleX execution model
- Standards-focused C++ API
- Developed by the STE||AR Group

Parallel Runtime Scheduling and Execution Controller (PaRSEC):
- Generic framework for executing distributed task-based applications
- Support for multiple Domain-Specific Language backends
- Developed by the Innovative Computing Laboratory (ICL)

at the University of Tennessee, Knoxville
-
-

Task-based Multi-Chain Ping-Pong

Motivation:
- Communication layer benchmarks necessary to measure and improve efficiency
- Traditional communication benchmarks do not apply to task-based runtimes
- Cross-runtime comparisons enable identification of implementation decisions

Design:
- Serial “chain” of tasks, located on different processes
- Tasks associated with different data, mandating communication
- Multiple sets of tasks approximate traditional benchmark “window size”
- Tasks optionally execute operations on data

Features:
- Variable message size, chain count, and chain length
- Measure compute/communication overlap with adjustable compute intensity
- Bidirectional measurement by round-robin instantiation of multiple independent 

chains on different initial processes
- Comprehensive output statistics for thorough performance characterization

Evaluation

Execution Environment:
- Expanse cluster at San Diego Supercomputer Center
- 2× AMD EPYC 7742: 128 cores @ 2.25 GHz with 256 GiB DDR4
- Mellanox ConnectX-6: 2× HDR InfiniBand links in a Hybrid Fat-Tree topology
- Rocky Linux 8.8 with Linux 4.18.0-477.15.1

Experiments:
- Vary message size, from 8 B to 256 KiB
- Vary number of chains, from 256 to 4096
- Vary compute intensity: 0µs, 10µs, 100µs, and 1000µs task length

Results:
-
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Motivation
 
Modern Parallel Architecture:
- Increased intra-node parallelism
- Increased heterogeneity
- Programmable networking

Asynchronous Many-Task (AMT) Model:
- Algorithms decomposed into tasks & dependencies
- Smart runtime handles mapping, scheduling, and 

data movement of tasks onto compute resources
- Examples: HPX, PaRSEC, Legion, StarPU
- Communication layer: usually MPI or GASNet

New Communication Paradigm:
- Multithreaded
- Irregular destinations
- Message classes: control & data
- Communication priorities
- Nondeterministic, execution-based ordering

A BSP program

A task-based program
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Lightweight Communication Interface (LCI) [1]
 
A low-level communication library.
- Intended user: high-level library developers.
- Like UCX/Libfabric/GASNet, as opposed 

to MPI.

Designed with task-based runtime as 
target clients.
- Applies to other irregular applications such 

as graph analysis/sparse linear algebra.

Major features:
- Flexible communication primitives and signaling mechanisms.
- Better multithreaded performance.
- Explicit user control of communication behaviors and resources.

Motivation
 
Modern Parallel Architecture:
- Increased intra-node parallelism.
- Increased heterogeneity.
- Powerful Interconnect.

Task-based Programming Model:
- Programmers decompose their 

program into tasks along  with their 
dependencies.

- The runtime will handle the mapping, 
scheduling and data movement.

- E.g. HPX, Legion, PaRSEC.
- Communication layer: MPI/GASNet.

New Communication Pattern:
- Multithreaded.
- Irregular destinations.
- Small messages.

HPX [2]

Task-based programming model with implicit task dependency 
graphs.

- Users invoke tasks like sequential code, and the runtime analyzes data usage and 
builds a task dependency graph.

Its communication layer implements a “parcelport” interface.
- A parcel consists of a small buffer (control data + small arguments) and 

optionally a few large zero-copy buffers.
- Current implementations: TCP, MPI, libfabric (work in progress).

The LCI Parcelport for HPX

Dedicated LCI progress threads:
- Better cache locality, cleaner worker thread behavior, more responsive and 

consistent network behavior.
- Instead of implicit background works in every MPI calls.

One-sided put operation:
- Only send. No receive needs to be posted.
- Receiver will get the references to the data from LCI completion queues.
- Instead of pre-posting multiple receives, probing, and then posting more follow-up 
receives in the MPI parcelport.

Directly put an “iovec” message:
- Send one eager message and multiple rendezvous messages in one call.
- Instead of multiple send/recv in the MPI parcelport.

Use Completion queues to deliver messages completion information:
-  Instead of repeated MPI_Test for lots of MPI requests.

No mutex locks on HPX/LCI message passing path:
- Instead of multiple lock-protected layers in the HPX/MPI message passing path: 
parcel queues, connection cache, pending request store, and internal lock in MPI. 

Other Optimizations:
- Thread-local backlog queues with aggregation.
- Separate network resources/progress threads for eager/rendezvous messages.

Evaluation

Platform: SDSC Expanse
- AMD EPYC 7742, 2 sockets, 4 NUMA nodes per socket, 128 cores (per node)
- 256GB Memory per node.
- HDR InfiniBand Interconnect.

Application: Octo-Tiger
- Astrophysics program simulating the evolution of star systems.
- Based on the fast multipole method on adaptive Octrees.

Results:
- LCI v.s. MPI:

- The LCI parcelport 
surpassed the MPI 
parcelport by more
 than 40%.

- NUMA effects: 

- NUMA effects are
 significant.

- LCI is more sensitive
 to NUMA effects than
 MPI.

- Specific optimizations:

- Removing locks on the 
communication path helps.
 (~40% speedup)

- Using separate resources 
helps. (~4% speedup)

- The backlog queue doesn’t 
- help. (~3% slowdown)
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Motivation
 
Modern Parallel Architecture:
- Increased intra-node parallelism.
- Increased heterogeneity.
- Powerful Interconnect.

Task-based Programming Model:
- Programmers decompose their programs into tasks 

along with their dependencies.
- The runtime will handle the mapping, scheduling, 

and data movement.
- E.g. HPX, Legion, PaRSEC.
- Communication layer: MPI/GASNet.

New Communication Pattern:
- Multithreaded.
- Irregular destinations.
- Small messages.

A BSP program
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Lightweight Communication Interface (LCI) [1]
 
A low-level communication library.
- Intended user: high-level library developers.
- Like UCX/Libfabric/GASNet, as opposed to MPI.

Designed with task-based runtime as target clients.
- Should also apply to other irregular applications such as graph 

analysis/sparse linear algebra.

Major features:
- Flexible communication primitives and signaling mechanisms.
- Better multithreaded performance.
- Explicit user control of communication behaviors and resources.

Motivation
 
Modern Parallel Architecture:
- Increased intra-node parallelism.
- Increased heterogeneity.
- Powerful Interconnect.

Task-based Programming Model:
- Programmers decompose their 

program into tasks along  with their 
dependencies.

- The runtime will handle the mapping, 
scheduling and data movement.

- E.g. HPX, Legion, PaRSEC.
- Communication layer: MPI/GASNet.

New Communication Pattern:
- Multithreaded.
- Irregular destinations.
- Small messages.

HPX [2]

Task-based programming model with implicit task dependency 
graphs.

- Users invoke tasks like sequential code, and the runtime analyzes data usage and 
builds a task dependency graph.

Its communication layer implements a “parcelport” interface.
- A parcel consists of a small buffer (control data + small arguments) and 

optionally a few large zero-copy buffers.
- Current implementations: TCP, MPI, libfabric (work in progress).

The LCI Parcelport for HPX

Dedicated LCI progress threads:
- Better cache locality, cleaner worker thread behavior, more responsive and 

consistent network behavior.
- Instead of implicit background works in every MPI calls.

One-sided put operation:
- Only send. No receive needs to be posted.
- Receiver will get the references to the data from LCI completion queues.
- Instead of pre-posting multiple receives, probing, and then posting more follow-up 
receives in the MPI parcelport.

Directly put an “iovec” message:
- Send one eager message and multiple rendezvous messages in one call.
- Instead of multiple send/recv in the MPI parcelport.

Use Completion queues to deliver messages completion information:
-  Instead of repeated MPI_Test for lots of MPI requests.

No mutex locks on HPX/LCI message passing path:
- Instead of multiple lock-protected layers in the HPX/MPI message passing path: 
parcel queues, connection cache, pending request store, and internal lock in MPI. 

Other Optimizations:
- Thread-local backlog queues with aggregation.
- Separate network resources/progress threads for eager/rendezvous messages.

Evaluation

Platform: SDSC Expanse
- AMD EPYC 7742, 2 sockets, 4 NUMA nodes per socket, 128 cores (per 

node)
- 256GB Memory per node.
- HDR InfiniBand Interconnect.

Application: Octo-Tiger
- Astrophysics program simulating the evolution of star systems.
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