Jiakun Yan

& jiakuny3@illinois.edu e @ jiakunyan.github.io

Research Interests

My research interest lies in parallel computing. Currently, I am interested in co-designing high-
level task-based programming models and low-level communication systems to better utilize modern
parallel architectures and improve the performance, scalability, and programmability of modern parallel
applications.

Education

University of Illinois at Urbana-Champaign Illinois, USA

o Computer Science PhD student, advised by Marc Snir . Aug. 2020 -

o Pursue research in Parallel Computing.

o GPA:4.0/4.0 | Relevant Courses: CS555 Numerical Methods for PDEs (ongoing), C5425 Distributed Sys-
tems, CS523 Advanced Operating System, CS533 Parallel Computer Architecture, CS526 Advance Compiler
Construction, CS483 Applied Parallel Programming.

Shanghai Jiao Tong University Shanghai, China
Sep. 2016 - Jun. 2020

o Zhiyuan Honors Program of Engineering (an elite program for top 5% talented students)
o GPA:91.88/100 | Ranking: 4% /151.

o Bachelor’s Degree of Engineering, Dept. of Computer Science.

University of California, Berkeley California, USA

o Exchange student, Berkeley Global Access Discover Program, GPA: 4.0/4.0. Jan. 2019 - May 2019

Experience

Programming Models and Runtime Systems Group Argonne National Laboratory

Research Intern, advised by Yanfei Guo May. 2023 - Aug. 2023
o Design and Evaluation of MPI Continuation in MPICH.

Programming Systems and Applications Research Group NVIDIA Research

Research Intern, advised by Michael Bauer and Michael Garland May. 2022 - Aug. 2022
o Realm Collective: design and implement collective communication operations in Realm.

PASSION Lab Lawrence Berkeley Laboratory

Research Assistant, advised by Aydin Bulug and Katherine Yelick Aug. 2019 - Jan. 2020

o Asynchronous RPC Library (ARL): a high-throughput RPC system with node-level aggregation and single-
node work-stealing.

o RDMA vs. RPC for Implementing Distributed Data Structures

Publication

o Jiakun Yan, Hartmut Kaiser, and Marc Snir. Design and Analysis of the Network Software Stack of an
Asynchronous Many-task System — The LCI parcelport of HPX, PAW-ATM 2023.

o Benjamin Brock, Yuxin Chen, Jiakun Yan, John Owens, Aydin Bulug, and Katherine Yelick. RDMA
vs. RPC for Implementing Distributed Data Structures, IA3 2019.

Project
HPX over LCI UIUC
Advised by Marc Snir and Hartmut Kaiser , WAMTA23 Poster Aug. 2021 - Present

1/2


mailto:jiakuny3@illinois.edu
http://jiakunyan.github.io
https://snir.cs.illinois.edu/
https://www.mcs.anl.gov/~yguo/
https://lightsighter.org/
https://mgarland.org/
https://people.eecs.berkeley.edu/~aydin/
https://people.eecs.berkeley.edu/~yelick/
https://snir.cs.illinois.edu/
https://www.lsu.edu/eng/cse/people/faculty/kaiser.php
https://wamta23.stellar-group.org/

o HPX s a runtime system known for its support for the asynchronous task programming model. Previously,
HPX uses MPI as its major communication backend. In this project, we added an LCI parcelport for HPX, using
LCI features including (a) dedicated progress threads to improve cache locality (b) one-sided "put iovec" primitive
to minimize message number and memory copies (c) completion queues to reduce probing and testing.

o The first version of a full-fledged LCI parcelport implementation has been merged to the HPX master branch
and will be shipped with HPX release 1.9.0. We evaluated the performance using a real-world application,
Octo-Tiger : a star system simulator based on the fast multipole method on adaptive Octrees. The LCI parcelport
achieved 40% performance speedup compared to the MPI parcelport on 32 nodes /4096 cores.

Lightweight Communication Interface UIUC
Advised by Marc Snir Aug. 2020 - Present

o The Lightweight Communication Interface (LCI) is designed to be a low-level communication library used
by high-level libraries and frameworks. It aims to support irregular and asynchronous applications such as
graph analysis, sparse linear algebra, and task-based runtime on modern parallel architectures. Major features
include (a) support for more communication primitives such as two-sided send /recv and one-sided remote put
(b) better multi-threaded performance (c) explicit user control of communication resource (d) flexible signaling
mechanisms such as synchronizer, completion queue, and active message handler.

o I'am one of the major developers of LCL. Main contributions include developing the Libfabric backend of LCI
and designing/implementing LCI v1.7 along with a parameterized testing framework and performance counters.
I am working on evaluating the multi-threaded performance of LCI and exploring ways, such as utilizing multiple
hardware contexts, to improve its multi-threaded performance.

Collective Communication Operations in Realm NVIDIA Research
Advised by Michael Bauer and Michael Garland May 2021 - Aug. 2021

o Realm is an event-based low-level runtime system providing a high-performance asynchronous task execution
model for the higher-level data-centric parallel programming system Legion . It offers the ability to perform
memory copies across different data buffers, regardless of their physical location. Originally, Realm only supports
point-to-point data copy operations. In this project, we extended the copy operation to handle collective broadcast
communication.

o We designed and implemented a hierarchical path planning algorithm that includes inter-node radix tree
broadcast and intra-node path aggregation. We used a set of synthetic benchmarks to evaluate the broadcast
operations and found it achieved significant improvement compared to the original point-to-point copies. (The
actual speedup number depends on the benchmark setup.)

TaskFlow: Task-based Runtime on Distributed-memory System UIUC
Advised by Josep Torrellas and Marc Snir , CS533 course project Jan. 2021 - May 2021

o TaskFlow is a simple but efficient task-based runtime for distributed-memory systems. It adopts the PTG-based
task programming model that enables reduced time/memory overhead and fine-grained synchronization. It
executes tasks according to an explicit task dependency graph and uses active messages to proactively signal
remote tasks.

o We implemented TaskFlow based on Argobots and MPI. We performed a collection of micro-benchmarks and
mini-applications to evaluate the performance of its various configurations and compare it with two established
PTG-based task systems, TaskTorrent and PaRSEC. The benchmark results showed that TaskFlow generally
achieved the best performance under various circumstances.

Skills

o Programming Language: C (proficient), C++, Python, Java, Rust, Go

o Library & Framework: libibverbs, libfabric, MPI, Argobots, PAPI, CUDA, GASNet-EX, UPC++,
OpenSHMEM, Pytorch, Android, Qt

2/2


https://github.com/STEllAR-GROUP/hpx
https://github.com/STEllAR-GROUP/octotiger
https://snir.cs.illinois.edu/
https://lightsighter.org/
https://mgarland.org/
https://legion.stanford.edu/
http://iacoma.cs.uiuc.edu/josep/torrellas.html
https://snir.cs.illinois.edu/

	Research Interests
	Education
	Experience
	Publication
	Project
	Skills

