
Lightweight Communication Interface:
 Efficient Message Passing Support for Irregular,

Multithreaded Communication.
Jiakun Yan, Omri Mor, Hoang-Vu Dang, Marc Snir

University of Illinois Urbana-Champaign

14th JLESC Workshop, Sep 28th, 2022

Traditional Parallel Programming

● Dominated by Message Passing Interface
(MPI).

● Typically, a MPI application uses…
○ Bulk-Synchronous Programming (BSP).

■ Global synchronous steps.
■ Local computation -> communication -> local

computation…
○ MPI everywhere.

■ One MPI process per CPU core.
■ MPI is known for its poor multithreaded

performance.

New Architecture calls for New Programming Model

● Modern parallel architecture
○ Increased intra-node parallelism.
○ Increased heterogeneity.
○ Powerful interconnect.

● Task-based programming model
○ Programmers decompose their program into

tasks along with their dependencies.
○ The runtime will handle the mapping,

scheduling and data movement.
○ E.g. HPX, Legion, PaRSEC.
○ Communication layer: MPI/GASNet.

New Communication Pattern

● New parallel architecture + new
programming model -> new
communication pattern.

○ Multithreaded.
○ Irregular destinations.
○ Small messages.

● Traditional communication libraries are
not efficient enough.

Lightweight Communication Interface (LCI)

● Designed with task-based runtime as the target clients.
○ Should also apply to other irregular applications such as graph analysis/sparse linear algebra.

● A low-level communication library.
○ Intended user: high-level library developers.
○ Like UCX/Libfabric/GASNet, as opposed to MPI.

● Major features:
○ Flexible communication primitives and signaling mechanisms.
○ Better multithreaded performance.
○ Explicit user control of communication behaviors and resources.

Flexible communication primitives and signaling mechanisms

● How much data to send
○ Short (inline), medium (eager), long (zero-copy)
○ iovec (one medium + multiple long)

● Who provides the source/target buffers
○ Two-sided send/recv
○ One-sided put/get

● What signaling mechanisms to use
○ Synchronizer (MPI_Request)
○ Completion queue
○ Active message handler
○ No signaling

● Whether the source/target buffers are user-provided or LCI-provided
○ Using LCI-provided buffers can potentially save one memory copy

● For long messages, whether the source/target buffers are registered.
● How to match the send and recv

○ tag only/rank+tag

Better multithreaded performance

● At the LCI level[1],
○ No coarse-grained mutex locks.
○ Replace the centralized MPI matching queue

with hashtable.
■ Give up the MPI ordering semantics.

● Message received can be
out-of-order.

■ Give up MPI_ANY_SOURCE and
MPI_ANY_TAG.

● But you can achieve almost the same
thing with tag-only matching.

[1] Hoang-Vu Dang, Marc Snir, William Gropp: Towards millions of communicating
threads. EuroMPI 2016: 1-14

Better multithreaded performance

● At the LCI level,
○ No coarse-grained mutex locks.
○ Replace the centralized MPI matching queue with

hashtable.
● At the lower level, allocate multiple

hardware contexts
○ ibverbs queue pairs, libfabric endpoints, UCX

workers…
○ But unlike MPI endpoint proposal, we can still

maintain one rank per node.
○ Working in progress.

Explicit user control of communication behaviors and resources

● Give users as much control as possible:
○ How many resources to allocate: matching table number and size, completion queue number

and size…
○ Which threads sharing which resources (hardware context, matching table, completion

queue…)
● Always propagate back pressure to users:

○ MPI send always succeeds, but LCI send can return LCI_ERR_RETRY.
● LCI_progress(): explicit making progress on background works.

○ Unlike MPI, while background progressing happens as a side-effect of MPI function calls.
○ The recommended way is to use one (or more) dedicated progressing threads.
○ LCI_progress() on specific hardware context and send/recv.

LCI: Current Status

● Actively evolving.
● Current backends:

○ libibverbs (for Infiniband)
○ libfabric (for Cray interconnect)

● Existing clients and collaborators:
○ Gluon, D-Galois, D-Ligra[1]: graph analytics.
○ PaRSEC[2] (working in progress): task-based programming model with explicit task

dependency graph
○ HPX[3] (working in progress): task-based programming model with implicit task dependency

graph

[1] Dathathri, Roshan, et al. "Gluon: A communication-optimizing substrate for distributed heterogeneous graph analytics." Proceedings of the 39th
ACM SIGPLAN conference on programming language design and implementation. 2018.
[2] Bosilca, George, et al. "Parsec: Exploiting heterogeneity to enhance scalability." Computing in Science & Engineering 15.6 (2013): 36-45.
[3] Kaiser, Hartmut, et al. "Hpx: A task based programming model in a global address space." Proceedings of the 8th International Conference on
Partitioned Global Address Space Programming Models. 2014.

HPX+LCI: Current Status

● HPX: task-based programming model with implicit task dependency graph.
○ Users invoke tasks like sequential code, and the runtime analyzes data usage and builds task

dependency graph.
● Its communication layer implements a “parcelport” interface.

○ A parcel consists of a small buffer (control data + small arguments) and optionally a few large
zero-copy buffers.

○ Current implementations: MPI, libfabric (working in progress)
● We are developing a LCI parcelport for HPX.

○ Use one-sided put, iovec, completion queue, dedicated progress thread.
■ We can transfer a parcel with only one LCI function call.

○ Minimum number of messages and memory copies.
○ No mutex lock.
○ Will use multiple hardware contexts.

● Working on performance evaluation.

Relevant Publications:

1. Hoang-Vu Dang, Marc Snir, William Gropp: Towards millions of
communicating threads. EuroMPI 2016: 1-14

2. Hoang-Vu Dang, Roshan Dathathri, Gurbinder Gill, Alex Brooks, Nikoli
Dryden, Andrew Lenharth, Loc Hoang, Keshav Pingali, Marc Snir: A
Lightweight Communication Runtime for Distributed Graph Analytics. IPDPS
2018: 980-989

3. Hoang-Vu Dang, Marc Snir: FULT: Fast User-Level Thread Scheduling Using
Bit-Vectors. ICPP 2018: 71:1-71:10

4. Roshan Dathathri, Gurbinder Gill, Loc Hoang, Vishwesh Jatala, Keshav
Pingali, V. Krishna Nandivada, Hoang-Vu Dang, Marc Snir: Gluon-Async: A
Bulk-Asynchronous System for Distributed and Heterogeneous Graph
Analytics. PACT 2019: 15-28

Q&A: Jiakun Yan (jiakuny3@illinois.edu)

Lightweight Communication Interface:
 Efficient Message Passing support for irregular, multithreaded

communication.

Github URL: https://github.com/uiuc-hpc/LC/tree/dev-v1.7

mailto:jiakuny3@illinois.edu
https://github.com/uiuc-hpc/LC/tree/dev-v1.7

